期刊文献+

一个混沌系统的单输入指数自适应同步分析

The Analysis of a Single Exponential Input Adaptive Synchronization of a Chaotic System
下载PDF
导出
摘要 首先引入一个含有乘积项系统参数的混沌系统.对新的吸引子的基本性质用相图、平衡点及稳定性、李亚谱诺夫指数谱、分岔图、Poincaré截面进行了详细分析.然后对系统参数都为正时的系统的界进行了估计,并给出系统界的表达式.由于系统中含有乘积项参数,当参数未知时,同步新系统会比较困难.文中用一个带有自适应参数更新的单输入控制器取得了系统的同步.最后,用数值仿真验证提出方法有效性. This paper firstly presents a chaotic system including a product term of system parameters. Basic dynamical properties ofthe attractor are demonstrated in terms of phase portrait, equilibria and stability, Lyapunov exponent spectrum, bifurcation diagram andpoincaré mapping. Then, the bound of this system is estimated for all the positive values of its parameters and the expression of the boundis illustrated. Owing to a product term of system parameters, it can be predicted that synchronization of the new system becomes more diffi-culty by taking account of uncertain system parameters. In this paper, the exponential synchronization between two identical chaotic sys-tems by applying single input controller associated with system parameter update laws is proposed. At last, numerical studies are providedto illustrate the effectiveness of the presented scheme.
出处 《广西科技师范学院学报》 2016年第1期113-119,共7页 Journal of Guangxi Science & Technology Normal University
基金 国家自然科学基金资助"带有伸缩器和饱和器的模糊自适应控制设计方法研究"(61305098) 广西教育厅自然科学基金资助"物联网中数据融合和安全问题关键技术研究"(KY2015YB399)
关键词 指数同步 混沌系统 单输入 自适应 exponential synchronization chaotic system single input adaptive
  • 相关文献

参考文献11

  • 1LORENZ E N.Deterministic no-periods flow[J].Journal of the atmospheric sicence,1963,20(2):130-148.
  • 2ROSSLER O E.An equation for continuous chaos[J].Phys Lett A,1976,57(5): 397-398.
  • 3SPROTT J C.Some simple chaotic flows [J].Phys Rev E,1984,50(2):647-650.
  • 4CHEN G R,Ueta A.Yet another chaotic Attractor[J].Inter J Bifur chaos, 1999,9(7):1465-1466.
  • 5LIU C X, LIU T, LIU L,et al.A new chaotic attractor[J].Chaos,Solitons and Fractals,2004,22(5):1031-1038.
  • 6DENG K B, LI J,YU S M.Dynamics ananysis and synchronization of a new chaotic attrator[J].Optik-international journal for light andelectron optics,2014,125(13):3071-3075.
  • 7LI D M,LU J A,WU X Q,et al. Estimating the bounds for the Lorenz family of chaotic systems[J].Chaos,Solitons and Fractals,2005,23(2): 529-534.
  • 8YU P,LIAO X X.New estimation for globally attractive and positive invariant set of the family of the Lorenz systems [J].Inter J Bifur Cha.os,2006,16(11):3383-3390.
  • 9SUN Y J. Solution bounds of generalized Lorenz systems[J].Chaos,Solitons and Fractals,2009,40(2):691-696.
  • 10LIAO X X,YU P,XIE S L,et al.Study on the global property of the smooth Chua’s systems[J]. Inter J Bifur Chaos, 2006 (10):2815-2841.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部