摘要
设c(G)是无向简单图G(V,E)的顶点染色数,证明了:若︱S︱>p/2且︱S︱=p-m,则图G不存在第p-q类图,其中:q≥2m+1,m≥3且m∈Z^+;若︱S︱=p-4,则小x(G)≤p-3;若︱S︱=p-4,则x(G)≤4■(G)+■2(G)-1.
Let c(G) to be vertex coloring number of undirected simple graph G(V, E).Proved that if ︱S︱p/2 and︱S︱=p-m,then there is no the p -q class graph in graph G,where q≥2m+1,m≥3 and m∈Z-+,if ︱S︱=p-4,then x(G)≤p-3;If ︱S︱=p-4,then x(G)≤4θ(G)+θ2(G)-1.
出处
《高师理科学刊》
2016年第3期17-20,共4页
Journal of Science of Teachers'College and University
关键词
顶点染色数
第k类图
最大团
图的厚度
vertex coloring number
k-class graph
maximum clique
thickness of a graph