期刊文献+

基于WiFi的室内定位系统设计与实现 被引量:4

Design and Implementation of Indoor Localization System Based on Wifi.Computer Engineering and Its Applications
下载PDF
导出
摘要 针对传统的指纹识别室内定位算法中指纹地图制作阶段需要大量的人工测量成本和室内环境中无线信号不稳定等问题,设计了一套基于K-strongest RSS Index(KSRI)算法的室内定位系统。通过KSRI算法的定位原理、定位模型和定位算法说明了其可行性,并进行了系统软件设计和系统性能测试。相比NN(Nearest Neighbor)和KNN(K-Nearest Neighbor)算法,KSRI算法在定位精确度、定位稳定性和计算量等方面均取得了最佳性能。基于KSRI算法的室内定位系统可以很好的解决室内的定位问题,具有很大的使用价值和应用前景。 In consideration of the problem that fingerprint map needs large manual detecting cost and the received signal strength(RSS)is not stable in the fingerprint identification algorithm,this paper designs an indoor localization system based on KSRI(K-strongest RSS Index)algorithm.Experimental results demonstrate that the principle of KSRI algorithm,its localization model and algorithm present indicate its feasibility.And it is used for software design and its performance testing.Compared with NN(Nearest Neighbor)and KNN(K-Nearest Neighbor)algorithms,KSRI algorithm has high precision,stable localization and calculation result,it obtains good performance.Indoor localization problem is well solve based on KSRI localization system,it has good prospects and high value of applications.
作者 杨鹏 熊曾刚
出处 《长江大学学报(自科版)(上旬)》 2016年第3期67-71,5,共5页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 湖北省自然科学基金项目(2014CFB188) 湖北省中青年科技创新团队项目(T201410) 温州市2014年公益性科技计划项目(G20140059)
关键词 室内定位 指纹识别 KSRI算法 indoor localization fingerprint identification algorithm K-strongest RSS Index(KSRI)algorithm mobile applications
  • 相关文献

参考文献15

  • 1Bulusu N, Heidemann J, Estrin D. GPS-less low-cost outdoor localization for very small devices [J] . Personal Communications, IEEE, 2000, 7 (5): 28-34.
  • 2Zandbergen P A. Accuracy of iPhone locations: A comparison of assisted GPS, WiFi and cellular positioning [J] . Transactions in GIS, 2009, 13 (sl): 5-25.
  • 3Filonenko V, Cullen C, Carswell J. Investigating ultrasonic positioning on mobile phones [A] . Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on IEEE [C] . 2010: 1-8.
  • 4Shahi A, Aryan A, West J S, et al. Deterioration of UWB positioning during construction [J] . Automation in Construction, 2012 (24) : 72-80.
  • 5Lee C, Chang Y, Park G, et al. Indoor positioning system based on incident angles of infrared emitters [A] IECON 2004 30th Annual Conference of IEEE [C] . 2004: 2218-2222.
  • 6Li Shuai, Lou Yue-sheng, Liu Bo. Bluetooth aided mobile phone localization: a nonlinear neural circuit approach [J] . ACM Transactions on Embedded Computing Systems (TECS), 2014, 13 (4) : 78.
  • 7Montaser A, Moselhi O. RFID indoor location identification for construction projects [J] . Automation in Construction, 2014 (39) : 167-179.
  • 8Luo H L. ZigBee-hased intelligent indoor positioning system soft computing [J] . Soft Computing, 2014, 18 (3) : 443-456.
  • 9Chung J, Donahoe M, Schmandt C, et al. Indoor location sensing using geo-magnetism [A] . Proceedings of the 9th international conference on Mobile systems, appliea-tions, and services, ACM [C] 2011: 141--154.
  • 10Chen Yin, Lymberopoulos D, Liu Jie, et al. Indoor localization using FM signals [J] . Mobile Computing, IEEE Transactions on, 2013, 12 (8): 1502-1517.

二级参考文献9

共引文献5

同被引文献37

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部