期刊文献+

混合高斯模型与三帧差分法相结合的建模新算法 被引量:6

New algorithm based on Gaussian mixture model and three frame difference method
下载PDF
导出
摘要 针对三帧差分法所存在的不足,提出一种改进的基于混合高斯模型与三帧差分相结合的建模方法。为每一个背景像素建立多维混合高斯模型,融入三帧差分法实时判定背景区域和运动区域,使之去除三帧差分带来的空洞现象,并且加入可跟随目标移动的外接矩形框,在其内生成高斯模型,从而减少因高斯模型的介入导致计算量过大的问题,节省运算时间,并且达到理想的除噪效果以及排除外界不必要的干扰等。通过实验进行验证分析,实验结果表明:该方法相比三帧差分法具有更好的除噪效果和减少更多的计算量,适用于实时的单目标检测。 An improved model based on Gaussian mixture model is proposed which is combined with three frame difference method,aiming at the shortcomings of the three frame difference method. We establish multidimensional Gaussian mixture model for each background pixels to remove the cavitations and add three frame difference method to Real-time determine the background area and sports area. An external rectangular box is added which can follow the target 's movement and in which Gaussian mixture model is generated. This method can reduce the large calculating quantity and save operation time for the intervention of Gaussian mixture model,get ideal effect of noise cancellation and eliminate the unnecessary interference. Through the experimental validation and analysis,it turns out that compared with three frame difference method,this method has better effect on noise cancellation and can decrease more computing. It is suitable for the real-time target detection.
出处 《黑龙江大学工程学报》 2016年第1期54-59,共6页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金青年科学基金资助项目(61503127)
关键词 混合高斯模型 三帧差分法 背景建模 外接矩形框 单目标 Gaussian mixture model three frame difference method background model external rectangle frame single target
  • 相关文献

参考文献5

二级参考文献30

  • 1刘贵喜,邵明礼,刘先红,朱东波.真实场景下视频运动目标自动提取方法[J].光学学报,2006,26(8):1150-1155. 被引量:32
  • 2田小波,陈蜀宇.基于最小效用的流媒体缓存替换算法[J].计算机应用,2007,27(3):733-736. 被引量:13
  • 3Boykov Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images // Proc of the IEEE International Conference on Computer Vision. Vancouver, Canada, 2001 : 105 - 112.
  • 4Rother C, Kolmogorov V, Blake A. GrabCut: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM Trans on Graphics, 2004, 23(3) : 309 -314.
  • 5Sumengen B, Manjunath B S. Graph Partitioning Active Contours (GPAC) for Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(4) : 509 -521.
  • 6Greig D M, Porteous B T, Seheult A H. Exact Maximum a Posteriori Estimation for Binary Images. Journal of the Royal Statistical Socie- ty: Series B, 1989, 51(2): 271 -279.
  • 7Ford L R, Fulkerson D R. Maximal Flow through a Network. Cana- dian Journal of Mathematics, 1956, 8 (3) : 399 - 404.
  • 8Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 ( 5 ) : 603 - 619.
  • 9Kolmogorov V, Zabih R. What Energy Functions Can Be Minimized via Graph Cuts? IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2004, 26(2): 147-159.
  • 10Boykov Y, Kolmogorov V. An Experimental Comparison of Min-Cut/ Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (9): 1124 -1137.

共引文献36

同被引文献64

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部