期刊文献+

可变剪接在神经发育过程中对生物学功能的影响 被引量:3

Progress on Alternative Splicing in Neurodevelopment
原文传递
导出
摘要 可变剪接(alternative splicing)发生在前体m RNA向成熟m RNA的转换过程中,是转录后表达调控和产生蛋白质多样性的重要机制。可变剪接在真核生物中普遍存在,神经系统发育作为一个极其复杂且严密的过程,可变剪接对它的影响更明显。近年来,一些参与神经发育的可变剪接事件已经得到一定程度的验证,可以得知它的发生影响了突触生长、突触传递和神经干细胞的形成等生物学功能。同时,当可变剪接的模式发生改变时往往也会造成神经系统的功能异常。因此,本文就可变剪接的机制进行了简短的介绍,探索其在神经发育及神经疾病中的作用,并简单总结了相关数据库。 Alternative splicing is a major mechanism which regulates gene expression and generates much of the enormous protein diversity. It occurs in transcription process from pre-m RNA to mature m RNA. Alternative splicing is widespread in eukaryotes,development of nervous system is a extremely complex and rigorous process, alternative splicing could affect it more obvious than on the simple process. In recent years, many alternative splicing events which participate in neural development has gained a certain degree of verification, that influence corresponding biological function, such as synaptic growth, synaptic transmission and the formation of neural stem cells. When the alternative splicing pattern changes, also tend to cause abnormal function of the nervous system.In this paper, the mechanism of alternative splicing was introduced, and its relationship with neural development and neural diseases was discussed. The current common database are also summarizes.
出处 《现代生物医学进展》 CAS 2016年第8期1579-1583,共5页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81270700) 教育部高等学校博士学科点专项科研基金(20133218110016)
关键词 可变剪接 数据库 神经发育 疾病 Alternative Splicing Database Neurodevelopment Disease
  • 相关文献

参考文献34

  • 1Chen M, Manley J L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches [J]. Nature Reviews Molecular Cell Biology, 2009, 10(11): 741-754.
  • 2Black D L. Mechanisms of alternative pre-messenger RNA splicing [J]. Annual review of biochemistry, 2003, 72(1): 291-336.
  • 3Komblihtt A R, Schor I E, All6 M, et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation [J]. Nature reviews Molecular cell biology, 2013, 14(3): 153-165.
  • 4Zhang X, Tolzmann C A, Melcher M, et al. Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum[J]. Eukaryotic cell, 2011, 10(11): 1422-1428.
  • 5Chacko E, Ranganathan S. Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases [J]. BMC genomics, 2009, 10(Suppl 3): S11.
  • 6Anko M L, Muller-McNicoll M, Brandl H, et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes[J]. Genome Biol, 2012, 13(3): R17.
  • 7Parker D J, Gardiner A, Neville M C, et al. The evolution of novelty in conserved genes; evidence of positive selection in the Drosophila fruitless gene is localised to alternatively spliced exons [J]. Heredity, 2013, 112(3): 300-306.
  • 8Kuwako K, Kakumoto K, Imai T, et al. Neural RNA-binding protein Musashil controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression [J]. Neuron, 2010, 67(3): 407-421.
  • 9Pickrell J K, Pai A A, Gilad Y, et al. Noisy splicing drives mRNA isoform diversity in human ceils [J]. PLoS genetics, 2010, 6 (12): e1001236.
  • 10Calarco J A, Zhen M, Blencowe B J. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts[J]. Rua, 2011, 17(5): 775-791.

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部