期刊文献+

分数阶光滑函数三次插值公式余项估计

Remainder estimation of cubic Lagrange interpolation for fractional smooth functions
下载PDF
导出
摘要 利用局部分数阶Taylor公式,导出了分数阶光滑函数等距节点三次Lagrange插值公式余项的精确估计式。 The sharp remainder estimation of cubic Lagrange interpolation with equidistant nodes is derived for fractional smooth functions based on local fractional Taylor's formula. Numerical examples verify the correctness of the theoretical analysis.
作者 樊梦 王同科
出处 《天津师范大学学报(自然科学版)》 CAS 2016年第2期1-5,共5页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11471166)
关键词 局部分数阶导数 分数阶Taylor公式 三次插值 余项估计 收敛阶 local fractional derivative fractional Taylor's formula cubic interpolation remainder estimation convergence order
  • 相关文献

参考文献11

  • 1STOER J, BULIRSCH R. Introduction to Numerical Analysis[M]. 2nd ed. Berlin: Springer, 2002.
  • 2GANCHO T T. Piecewise linear interpolation with nonequidistant nodes [J]. Numerical Functional Analysis and Optimization, 2000, 21 (7/8): 945-953.
  • 3FRANCESC A. Interpolation and approximation of piecewise smooth functions[J]. SIAM Journal on Numerical Analysis, 2006, 43 ( 1 ) : 41- 57.
  • 4王同科,佘海艳,刘志方.分数阶光滑函数线性和二次插值公式余项估计[J].计算数学,2014,36(4):393-406. 被引量:6
  • 5DAS S. Functional Fractional Calculus[M]. Berlin: Springer-Vedag, 2011.
  • 6KOLWANKAR K M, GANGAL A D. Hlder exponents of irregular sig- nals and local fractional derivatives[J]. Pramana, Journal of Physics, 1997, 48(1) : 49-68.
  • 7KOLWANKAR K M. Recursive local fractional derivative[J], arXiv preprint arXiv: 1312.7675, 2013, http ://arxiv.org/abs/1312.7675.
  • 8JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nofi-differentiable functions further results[J]. Comput- ers and Mathematics with Applications, 2006, 51(9) : 1367-1376.
  • 9CHEN Y, YAN Y, ZHANG K. On the local fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2010, 362 (1): 17-33.
  • 10王同科,张东丽,王彩华.Mathematica与数值分析实验[M].北京:清华大学出版社,2011.

二级参考文献17

  • 1王同科,张东丽,王彩华.Mathematica与数值分析实验[M].北京:清华大学出版社,2011.
  • 2王兴华,杨义群.关于低度光滑函数的插值余项[J].高等学校计算数学学报,1983,5(3):193-203.
  • 3Gancho T. Tachev. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Func- tional Analysis and Optimization, 2000, 21(7-8): 945-953.
  • 4Francesc Arandiga. Interpolation and approximation of piecewise smooth functions[J]. SIAM Jour- nal on Numerical Analysis, 2006, 43(1): 41-57.
  • 5Shantanu Das. Functional fractional calculus[M]. Springer, 2011.
  • 6Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimensions[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 1996, 6(4): 505-513.
  • 7Kolwankar KM, Gangal AD. HSlder exponents of irregular signals and local fractional deriva- tives[J]. Pramana- Journal of Physics, 1997, 48(1): 49-68.
  • 8Ben Adda F, Cresson J. About non-differentiable functions[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 721-737.
  • 9Babakhani A, Daftardar-Gejji V. On calculus of local fractional derivatives[J]. Journal of Mathe- matical Analysis and Applications, 2002, 270(1): 66-79.
  • 10Yan Chen, Ying Yan, Kewei Zhang. On the local fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2010, 362(1): 17-33.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部