期刊文献+

Adams谱序列的一些注记 被引量:1

Some notes on Adams spectral sequence
下载PDF
导出
摘要 利用May谱序列证明了,当n>3时,乘积元素l_ng_0∈Ext_A^5,pn+1q+2 pnq+pq+2q(Z_p,Z_p)和h_0g_n∈Ext_A^(3,pn+1q+2 pnq+q)(Z_p,Z_p)是非平凡的,并且l_ng_0和h_0g_n在Adams谱序列中不是d_r(r≥2)边缘,其中:p≥5,q=2(p-1) By using the May spectral sequence,it is proved that the two products l_ng_0∈Ext_A5,pn+1q+2 pnq+pq+2q(Z_p,Z_p) and h_0g_n∈Ext_A(3,pn+1q+2 pnq+q)(Z_p,Z_p) are nontrivial,and both of them are not the dr-boundary in the Adams spectral sequence,where n 3,p≥5,q = 2(p- 1).
作者 杜瑞 王玉玉
出处 《天津师范大学学报(自然科学版)》 CAS 2016年第2期6-9,共4页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11301386) 天津市青年骨干教师资助计划项目(ZX110QN044) 天津师范大学博士基金资助项目(52XB1011)
关键词 MAY谱序列 Ext群 ADAMS谱序列 dr微分 非平凡性 May spectral sequence Ext group Adams spectral sequence dr-differential nontriviality
  • 相关文献

参考文献6

  • 1ADAMS J F. Stable Homotopy and Generalised Homology[M]. Chica- go: Univeristy of Chicago Press, 1974.
  • 2Xiu Gui LIU.A Nontrivial Product of Filtration s+5 in the Stable Homotopy of Spheres[J].Acta Mathematica Sinica,English Series,2007,23(3):385-392. 被引量:4
  • 3ZHONG L N, LIU X G. Non-triviality of the product boko5,. in the Adams spectral sequence[J]. Acta Mathematica Scientia, 2014, 34(2): 274-282.
  • 4LIULEVICIUS A. The factorizations of cyclic reduced powers by sec- ondary cohomology operations[J]. Mem Amer Math Soc, 1962, 42: 1- 112.
  • 5AIKAWA T. 3-dimensional cohomology of the mod p Steenrod algebra[J]. Mathematica Scandinavica, 1980, 47 : 91-115.
  • 6RAVENEL D C. Complex Cobordism and Stable Homotopy Groups of Spheres[M]. Orlando: Academic Press, 1986.

二级参考文献10

  • 1Cohen, Ralph L.: Odd primary families in stable homotopy theory. Mere. Amer. Math. Soc., 242, 1-92(1981)
  • 2Liulevicius, A.: The factorizations of cyclic reduced powers by secondary cohomology operations. Mere.Amer. Math. Soc., 42, 1-112 (1962)
  • 3Lin, J. K.: A new family of filtration three in the stable homotopy of spheres. Hiroshima Math. J., 31(3),477-492 (2001)
  • 4Ravenel, D. C.: Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Orlando,1986
  • 5Wang, X., Zheng, Q.: The convergence of αs^(n) hohk. Sci. China Set. A, 41(6), 622-628 (1998)
  • 6Cohen, Ralph L., Goerss, P.: Secondary cohomology operations that detect homotopy classes. Topology,23, 177-194 (1984)
  • 7Oka, S.: Multilicative structure of finite ring spectra and stable homotopy of spheres. Algebraic Topology (Aarhus), Lecture Notes in Math., Springer-Verlag, 1051, 418-441, 1984
  • 8Zhou, X. G.: Higher cohomology operations that detect homotopy classes, Lecture Notes in Math., Springer-Verlag, 1370, 416-436, 1989
  • 9Toda, H.: Algebra of stable homotopy of Zp-spaces and applications. J. Math. Kyoto Univ., 11, 197-251(1971)
  • 10Toda, H.: On spectra realizing exterior parts of the Steenrod algebra. Topology, 10, 55-65 (1971)

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部