期刊文献+

基于人工神经网络和随机游走模型的汇率预测 被引量:4

Exchange Rate Forecast Based on Artificial Neural Network and Random Walk Model
下载PDF
导出
摘要 由于金融数据具有随机性特征,使得建模和预测变得极其困难.提出一种组合预测方法,即假定任何金融时序数据由线性和非线性两部分组成,将其中线性部分的数据通过随机游走(RW)模型进行模拟,剩余的非线性残差部分由前馈神经网络(FANN)和诶尔曼神经网络(EANN)协同处理.从实证结果可知,该组合方法相比单独使用RW、FANN或EANN模型有更高的预测精度. The random characteristics of financial time series make the task of modeling and forecasting extremely difficult. In this paper, we proposed a combination methodology benefiting from the strengths of both RW and ANN models, which assumes that any financial time series consist of a linear part and a nonlinear part. The linear part of a financial dataset is pro-cessed through the RW model, and the remaining nonlinear residuals are processed using an ensemble of FANN and EANN models. The empirical results demonstrate that our combination method achieves reasonably better forecasting accuracies than each of RW, FANN and EANN models in isolation.
出处 《经济数学》 2016年第1期30-35,共6页 Journal of Quantitative Economics
基金 中央高校基本科研业务费专项资金项目(11614801) 广东省省部产学研结合项目(2011A090200044)
关键词 诶尔曼神经网络 人工神经网络 随机游走模型 组合预测 金融时间序列 EANN artificial neural network random walk model combination forecast financial time series
  • 相关文献

参考文献9

  • 1Y SUN. Exchange rate forecasting with an artificial neural network model: can we beat a random walk model? [D]. New Zealand: Christchurch, Lincoln University, 2005.
  • 2A HUSSAIN, A KNOWLES, P LISBOA, et al. Financial time series prediction using polynomial pipelined neural net- works[J]. Expert Systems with Applications, 2008, 35 (3) : 1186-1199.
  • 3M SEWELL. The application of intelligent systems to financial time series analysis[D]. London:Department of Computer Sci- ence, UCL,2010.
  • 4C LEMKE,B GABRYS. Meta-learning for time series forecas- ting and forecast combination[J].Neurocomputing, 2010, 73 (10) : 2006-2016.
  • 5G BOX, G JENKINS, G REINSEL. Time series analysis: forecasting and control[M]. London John Wiley & Sons, 2011. 734.
  • 6E TYREE, J LONG. Forecasting currency exchange rates: neural networks and the random walk model[J].Citeseer, 1995(1):981-996.
  • 7G ZHANG. Time series forecasting using a hybrid ARIMA and neural network model[J].Neurocomputing, 2003, 50: 159-175.
  • 8G ZHANG. A neural network ensemble method with jittered training data for time series forecasting[J].Information Sci- ences, 2007, 177(23): 5329-5346.
  • 9熊志斌.ARIMA融合神经网络的人民币汇率预测模型研究[J].数量经济技术经济研究,2011,28(6):64-76. 被引量:57

二级参考文献30

  • 1王佳妮,李文浩.GARCH模型能否提供好的波动率预测[J].数量经济技术经济研究,2005,22(6):74-87. 被引量:43
  • 2戴晓枫,肖庆宪.时间序列分析方法及人民币汇率预测的应用研究[J].上海理工大学学报,2005,27(4):341-344. 被引量:46
  • 3高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 4许少强,李亚敏.参考“一篮子”货币的人民币汇率预测——基于ARMA模型的实证方法[J].世界经济文汇,2007(3):30-40. 被引量:30
  • 5Anastasakis L, Mort N. Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling qpproach [J]. Expert Systems with Applications, 2009, (36): 12001~12011.
  • 6Bollerslev T. Generalised autoregressive conditional heteroskedasticity [J]. Journal of Economet rics, 1986, Voi. 31 (3): 307-327.
  • 7Brooks C. , Testing for non - linearity in daily sterling ea:ckange rates [J], Applied Finance Economics, 1996, (6): 307~317.
  • 8Coakley J. R. , Brown C. E. Artificial neural networks in accounting and finance : Modelling issues [J].International Journal of Intelligent Systems in Accounting, 2000, Vol. 9 (2) : 144-199.
  • 9Engle R. F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation [J]. Economertrica, 1982, Vol. 50 (4):987-1008.
  • 10Granger C. W. J. , Anderson A. P. An introduction to bilinear time series models [M], Gottingen: Vandenhock and Rupreeht, 1978.

共引文献56

同被引文献35

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部