期刊文献+

图形模糊聚类算法初始化方式改进 被引量:3

An improved initialization of picture fuzzy clustering algorithm
下载PDF
导出
摘要 为了降低初始化参数对图形模糊聚类算法收敛性的影响,对图形模糊聚类算法的初始化方法加以改进。将隶属度、中立度和拒绝度3个参量的随机值先求平方,再按其平方和进行归一化处理,以代替原来的初始化方法。将改进前后的算法用于Iris文本数据分类,以及基于1维或2维直方图的人物、医学和遥感的图像分割,结果显示,改进算法用时短,收敛快。将改进算法作用于含噪标准灰度图像,分割结果的峰值信噪比更高。 To reduce th eeffects of initialization parameters on the convergence of picture fuzzy clustering algorithm,the initialization method of picture fuzzy clustering is improved.Different from the original one,after getting the random values of the three parameter,which are positive degree,neutral degree and refused degree,the new initialization method chose to normalize these parameters accordding to the sum of their squares.Classification experiment of Iris text data and segmentation experiment of people, medicine,and remote sensing images based on one dimensional or two dimensional histogram show that,the improved algorithm works shorter and converges faster.As be used on normal gray images with noise,the improved algorithm can get segmentations with higher peak signal to noise ratio in general.
作者 吴成茂 何晶
出处 《西安邮电大学学报》 2016年第2期52-56,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金重点资助项目(61136002) 陕西省自然科学基金资助项目(2014JM8331 2014JQ5183 2014JM8307) 陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词 模糊聚类 图形模糊集 初始化 收敛性 fuzzy clustering picture fuzzy set initialization convergence
  • 相关文献

参考文献14

  • 1BORA D J,GUPTA K A.A Comparative Study Between Fuzzy Clustering Algorithm and Hard Clustering Algorithm[J/OL].International Journal of Computer Trends and Technology,2014,2(10):108-113[2015-10-20].http://www.ijcttjournal.org/archives/ijctt-v10p119.
  • 2SHIVHARE P,GUPTA V.Review of Image Segmentation Techniques Including Pre&Post Processing Operations[J/OL].International Journal of Engineering and Advanced Technology,2015,4(3):153-157[2015-10-20].http://www.ijeat.org/attachments/File/v4i3/C3782024315.pdf.
  • 3KANDWAL R,KUMAR A,BHARGAVA S.Review:Existing Image Segmentation Techniques[J/OL].International Journal of Advanced Research in Computer Science and Software Engineering,2014,4(4):153-156[2015-10-20].http://www.ijarcsse.com/docs/papers/Volume_4/4_April2014/V4I4-0130.pdf.
  • 4HAN L X,CHEN G H.A fuzzy clustering method of construction of ontology-based user profiles[J/OL].Advances in Engineering Software,2009,7(40):535-540[2015-10-20].http://www.sciencedirect.com/science/artic-le/pii/S0965997808001762.DOI:10.1016/j.advengsoft.2008.10.006.
  • 5ZADEH L A.Fuzzy sets[J/OL].Information and Control,1965,8(3):338-353[2015-10-20].http://www.sciencedirect.com/science/article/pii/S001999586590241.
  • 6李琳,范九伦,赵凤.模糊C-均值聚类图像分割算法的一种改进[J].西安邮电大学学报,2014,19(5):56-60. 被引量:24
  • 7WANG Z M,SONG Q,SOH Y C,et al.An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation[J/OL].Computer Vision and Image Understanding,2013,117(10):1412-1420[2015-10-20].http://www.sciencedirect.com/science/article/pii/S1077314213000957.DOI:10.1016/j.cviu.2013.05.001.
  • 8ATANASSOV K T.Intuitionistic fuzzy sets[J/OL].Fuzzy Sets and Systems,1986,20:87-96[2015-10-20].http://www.sciencedirect.com/science/article/pii/S0165011486800343.DOI:10.1016/SO165-0114(86)80034-3.
  • 9LIN K P.A novel evolutionary kernel intuitionistic fuzzy C-means clustering algorthm[J/OL].IEEE Transaction on Fuzzy Systems,2014,22(5):1074-1087[2015-10-20].http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6587744.DOI:10.1109/TFUZZ.2013.2280141.
  • 10PRABHJOT K,ANIL S,ANJANA G.Arobust kernelized intuitionistic fuzzy C-means clustering algorithm in segmentation of noisy medical images[J/OL].Pattern Recognition Letters,2013,34(2):163-175[2015-10-20].http://www.sciencedirect.com/science/article/pii/S0167865512003005.DOI:10.1016/j.patrec.2012.09.015.

二级参考文献11

  • 1刘健庄,1990年
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3Ahmed M N,Yamany S M,Mohamed N,et al.A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
  • 4Krinidis S,Chatzis V.A robust fuzzy local information c-means clustering algorithm[J].IEEE Transactions on Image Processing,2010,19(5):1328-1337.
  • 5Chen Songcan,Zhang Daoqiang.Robust image segmentation using FCM with spatial constraints based on new kernel-induce distance measure[J].IEEE Transactions on System,Man and Cybernetics.Part B:Cybernetics,2004,34(4):1907-1916.
  • 6Minh N D,Martin V.Wavelet-based texture retrieval using generalized Gaussian density and KullbackLeibler distance[J].IEEE Transactions on Image Processing,2002,11(2):146-158.
  • 7何俊,葛红,王玉峰.图像分割算法研究综述[J].计算机工程与科学,2009,31(12):58-61. 被引量:103
  • 8Feng Zhao (1) add_zf1119@hotmail.com Licheng Jiao (1) Hanqiang Liu (1).Fuzzy c-means clustering with non local spatial information for noisy image segmentation[J].Frontiers of Computer Science,2011,5(1):45-56. 被引量:33
  • 9李旭超,刘海宽,王飞,白春艳.图像分割中的模糊聚类方法[J].中国图象图形学报,2012,17(4):447-458. 被引量:66
  • 10任应军,范九伦.一种DWT与背景重构相结合的运动目标分割方法[J].计算机科学,2012,39(10):290-293. 被引量:2

共引文献87

同被引文献49

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部