期刊文献+

Shape-controlled Synthesis of Fe3O4 Nanocrystals with Incontinuous Multicavities 被引量:1

Shape-controlled Synthesis of Fe3O4 Nanocrystals with Incontinuous Multicavities
原文传递
导出
摘要 In the solvothermal synthesis process, the effect of NaOH dosages of from 0.3 g to 4.0 g on the morphology evolution(from nanoparticles to octahedra) of Fe3O4 crystals was carefully investigated. Meanwhile, the growth process of Fe3O4 crystals at different reaction time was also investigated. Furthermore, it has been found that the particle size and crystallinity of Fe3O4 crystals can be controlled by the dosages of NaOH. In this paper, the increases of both the reaction time and the NaOH concentrations correspond to a minimization process of surface energy for Fe3O4 crystals. During the synthesis process, the addition of N2Ha·H2O and ethylene glycol in the magnetite not only facilitated the narrow distribution of particle size but also contributed to the formation of incontinuous multicavities with a diameter of about 5 nm. In the solvothermal synthesis process, the effect of NaOH dosages of from 0.3 g to 4.0 g on the morphology evolution(from nanoparticles to octahedra) of Fe3O4 crystals was carefully investigated. Meanwhile, the growth process of Fe3O4 crystals at different reaction time was also investigated. Furthermore, it has been found that the particle size and crystallinity of Fe3O4 crystals can be controlled by the dosages of NaOH. In this paper, the increases of both the reaction time and the NaOH concentrations correspond to a minimization process of surface energy for Fe3O4 crystals. During the synthesis process, the addition of N2Ha·H2O and ethylene glycol in the magnetite not only facilitated the narrow distribution of particle size but also contributed to the formation of incontinuous multicavities with a diameter of about 5 nm.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第2期159-164,共6页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.51501068).
关键词 Fe3O4 nanocrystal Incontinuous multicavity Magnetic property Fe3O4 nanocrystal Incontinuous multicavity Magnetic property
  • 相关文献

参考文献31

  • 1Wang C., Daimon H., Sun S. H., Nano Lett., 2009, 9(4), 1493.
  • 2Lee S. H., Yu S. H., Lee J. E, Jin A. H., Lee D. J., Lee N., Jo H., Shin K., Ahn T. Y., Kim Y. W., Choe H., Sung Y. E., Hyeon T., Nano Lett., 2013, 13(9), 4249.
  • 3Chalasani R., Vasudevan S., ACS Nano, 2013, 7(5), 4093.
  • 4He C. N., Wu S., Zhao N. Q., Shi S. H., Liu E. Z., Li J. J., ACS Nano, 2013, 7(5), 4459.
  • 5Sun C. R., Du K., Fang C., Bhattarai N., Veiseh O., Kievit F., Stephen Z., Lee D. H., Ellenbogen R. G., Ratner B., ACS Nano, 2010, 4(4), 2402.
  • 6Xiao L. S., Li J. T., Brougham D. F., Fox E. X., Feliu N., Bushmelev A., Schmidt A., Mertens N., Kiessling F., Valldor M., Fadeel B., Mathur S., ACS Nano, 2011, 5(8), 6315.
  • 7Tian Y., Yu B. B., Li X., Li K., J. Mater. Chem. 2011, 21, 2476.
  • 8Cheong S., Ferguson P., Feindel K. W., Hermans I. F., Callaghan P. T., Meyer C., Slocombe A., Su C. H., Cheng F. Y., Yeh C. S., Ingham B., Toney M. F., Tilley R. D., Angew. Chem. Int. Ed. 2011, 50, 4206.
  • 9Huang J., Chen W. M., Zhao W., Li Y. Q., Li X. G., Chen C. P., J. Phys. Chem. C 2009, 113(28), 12067.
  • 10Jia L. C., Harbauer K., Bogdanoff P., Ellmer K., Fiechter S., J. Mater. Sci. Technol. 2015, 31, 655.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部