期刊文献+

Effect of Sulfonation Degree on Performance of Proton Exchange Membranes for Direct Methanol Fuel Cells 被引量:1

Effect of Sulfonation Degree on Performance of Proton Exchange Membranes for Direct Methanol Fuel Cells
原文传递
导出
摘要 A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However, the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability. A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However, the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第2期291-295,共5页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.21074044), the National Basic Research Program of China(Nos.2011CB935700, 2012CB215500) and the National High Technology Research and Development Program of China (No .2012AA053401).
关键词 Fuel cell Sulfonation degree Proton exchange membrane Methanol permeability Fuel cell Sulfonation degree Proton exchange membrane Methanol permeability
  • 相关文献

参考文献13

  • 1Lin M. L., Lo M. Y., Mou C. Y., Catalysis Today, 2011, 160, 109.
  • 2Xue X. Z., Ge J. J., Liu C. P., Xing W., Lu T. H., Electrochem. Commun., 2006, 8, 1280.
  • 3Li X., Chen G., Xie J., Zhang, L. J., Xia D. G., Wu Z. Y., J. Electrochem. Soc., 2010, 157, B580.
  • 4Zhang Y. W., Ge J. J., Cui Z. M., Liu C. P., Xing W., Zhang J. J., Lin H. D., Na H., Inter. J. Hydrogen Energy, 2010, 35, 8337.
  • 5Shao A. F., Wang Z. B., Chu Y. Y., Jiang Z. Z., Yin G. P., Liu Y., Fuel Cells, 2010, 10, 472.
  • 6Lin H., Sun W., Zhao C., Na H., J. Polymer Res., 2013, 20, 306.
  • 7Zhang Y., Cai W., Si F., Ge J., Liang L., Liu C., Xing W., Chem. Commun., 2012, 48, 2870.
  • 8Li M., Zhang G., Xu S., Zhao C., Han M., Zhang L., Jiang H., Liu Z., Na H., J. Power Sources, 2014, 255, 101.
  • 9Zhang L., Zhang G., Zhao C., Jiang H., Wang J., Xu D., Zhang Y., Shao K., Liu Z., Ma W., Li H., Li M., Wang S., Na H., J. Power Sources, 2012, 201, 142.
  • 10Perrot C., Gonon L., Bardet M., Marestin C., Pierre-Bayle A., Gebel G., Polymer, 2009, 50, 1671.

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部