期刊文献+

基于随机牵制控制器的复杂网络系统的镇定 被引量:2

Stabilization of Complex Networks via Stochastic Pinning Controller
下载PDF
导出
摘要 主要研究一类具有连续线性耦合节点的复杂动态网络系统的牵制控制问题,提出了一种基于随机变量的随机牵制控制方法。通过对部分节点施加带有随机变量的状态反馈牵制控制器,可以实现整个复杂网络系统的稳定。可以看出,虽然随机牵制方法不要求控制器一直作用在选定的节点上,但同样能使得复杂网络系统稳定。运用鲁棒思想首次讨论了系统耦合矩阵发生变化时所设计的随机牵制控制器的有效性问题,给出了所设计控制器仍然能保证系统的稳定性的充分条件。基于所得结果,进一步讨论了所含随机变量的期望值含有不确定性和未知时的牵制控制问题。最后通过数值仿真进一步验证了所提方法的正确性和有效性。 It was focused on the pinning control problem for a class of complex dynamic networks with linearly continuous-time coupled nodes.A new method for designing pinning controllers with stochastic pinning viewpoint is firstly proposed,which is referred to be stochastic pinning control.By adding such a controller to a fraction of nodes the stochastic stability of the entire complex networks can be guaranteed.It is claimed that the stochastic pinning control method without adding the selected nodes always could also stabilize the complex networks.By exploiting the robust method,sufficient condition is given for a kind of generally complex networks with coupling matrix changing to be another one,where the designed stochastic pinning controller is still available.Based on the established results,some results with the expectation of Bernouli variable uncertain and unknown are presented too.Finally,the correctness and effectiveness of the proposed methods is verified by a numerical example.
出处 《辽宁石油化工大学学报》 CAS 2016年第1期52-59,共8页 Journal of Liaoning Petrochemical University
基金 国家自然科学基金项目(61104066 61473140) 中国博士后面上项目(2012M521086) 辽宁省高等学校优秀人才支持计划项目(LJQ2013040) 辽宁省自然科学基金项目(2014020106)
关键词 复杂网络 随机牵制控制 随机稳定 鲁棒性 自适应控制 Complex networks Stochastic pinning control Stochastic stabilization Robustness Adaptive control
  • 相关文献

参考文献21

  • 1Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410(6825):268-276.
  • 2Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2) :167-256.
  • 3Hatano Y, Mesbahi M. Agreement over random networks[J]. IEEE Transactions on Automatic Control, 2005,50(11) : 1867 1872.
  • 4Boccaletti S, Latora V, Moreno Y, et al. Complex networks : Structure and dynamics[J-1.Physics Reports, 2006, 424 (4- 5) : 175-308.
  • 5Porfiri M, Stilwell D J. Consensus seeking over random weighted directed graphs[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1767-1773.
  • 6Wang X F, Chen G R. Complex networks: small-world, scale-free and beyond[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2003, 3(1) :6-20.
  • 7Zhou J, Lu J A, Lti J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Transactions on Automatic Control, 2006, 51(4):652-656.
  • 8Yu W W, Delellis P, Chen G R, et al. Distributed adaptive control of synchronization in complex networks[J]. IEEE Transactions on Automatic Control,2012, 57(8):2153-2158.
  • 9Cheng R R, Peng M S, Yu W B. Pinning synchronization of delayed complex dynamical networks with nonlinear coupling [J]. Physica A : Statistical Mechanics and Its Applications, 2014, 413 : 426-431.
  • 10罗毅平,周笔锋.时滞扩散性复杂网络同步保性能控制[J].自动化学报,2015,41(1):147-156. 被引量:12

二级参考文献15

  • 1Liao T, Tsai S. Adaptive synchronization of chaotic systems and its application to secure communications[J]. Chaos, Solitons and Fractals, 2000,11(9): 1387-1396.
  • 2Zhou J, Lu J A, Lv J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Trans on Automatic Control, 2006, 51(4): 652-656.
  • 3Sun H Y, Zhang Q L, Li N. Synchronization control of united complex dynamical networks with multi-links[J]. Int J of Innovative Computing, Information and Control, 2011, 7(2): 927-940.
  • 4Sun H Y, Li N, Sun H, et al. Adaptive synchronization control of the delayed complex dynamical networks and its application on electromechanical systems[J]. ICIC Express Letters, 2011, 5(10), 3605-3611.
  • 5Yu W W, Chen G R, Lv J H. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45(2): 429-435.
  • 6Lu J Q, Ho D W C, Cao J D. An unified synchronization criterion for impulsive dynamical networks[J]. Automatica, 2010, 46(7): 1215-1221.
  • 7Cai S M, Liu Z R, Xu F D, et al. Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit[J]. Physics Letters A, 2009, 373(42): 3846-3854.
  • 8Xia W G, Cao J D. Pinning synchronization of delayed dynamical networks via periodically intermittent control[J]. Chaos, 2009, 19(1): 013120.
  • 9Pan L J, Cao J D. Stochastic quasi-synchronization for delayed dynamical networks via intermittent control[J]. Commun Nonlinear Science Numer Simulation, 2012, 17(3): 1332-1343.
  • 10Hu C, Yu J, Jiang H J, et al. Exponential synchronization of complex networks with finite distributed delays coupling[J]. IEEE Trans on Neural Networks, 2011, 22(12): 1999-2010.

共引文献16

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部