期刊文献+

一类非线性分数阶差分方程边值问题解的存在性及Ulam稳定性 被引量:9

Existence and Ulam stability of solutions for a boundary value problem of nonlinear fractional difference equation
下载PDF
导出
摘要 讨论了一类非线性分数阶差分方程解的存在性及Ulam稳定性。应用Schaefer不动点定理及不等式技巧获得了方程解的存在性结果,同时得到了方程的解具有Ulam稳定性的新判据,并举例说明了所得主要结果的有效性。 The existence and Ulam stability of solutions of a discrete nonlinear fractional boundary value problem are studied. The existence results are established based on Schaefer fixed point theorem and inequality analysis technique. Meanwhile,new criteria for Ulam stability of solutions to the nonlinear fractional difference equation are provided and examples are presented to illustrate the effectiveness of the main results.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期1-6,13,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11471278) 湖南省自然科学基金资助项目(14JJ2133) 湖南省重点建设学科资助项目
关键词 分数阶差分方程 不动点 存在性 Ulam稳定性 fractional difference equation fixed point existence Ulam stability
  • 相关文献

参考文献14

  • 1金世欣,张毅.基于Caputo分数阶导数的含时滞的非保守系统动力学的Noether对称性[J].中山大学学报(自然科学版),2015,54(5):49-55. 被引量:13
  • 2BAI Z B, LV H S. Positive solution for boundary value problem of nonlinear fractional differential equation [ J ]. Journal of Mathematical Analysis and Applications, 2005, 311(2) : 495 -505.
  • 3ZHANG S Q. Positive solutions to singular boundary val- ue problem for nonlinear fractional differential equation [ J ]. Computers and Mathematics with Applications, 2010, 59(3) :1300 -1309.
  • 4王金华,赵育林,向红军.分数微分方程m点边值问题解的存在性与唯一性[J].中山大学学报(自然科学版),2011,50(1):4-8. 被引量:7
  • 5WANG J R, LV L L, ZHOU Y. Ulam stability and data dependence for fractional differential equations with Capu- to derivative [ J ]. Electronic Journal of Qualitative Theory of Differential Equations, 2011, 22(63) : 1 - 10.
  • 6WANG J H, XIANG H J, ZHAO Y L. Monotone and concave positive solutions to a boundary value problem for higher order fractional differential equation [ J ]. Abstract and Applied Analysis, 2011, 71 (5) : 1821 - 1848.
  • 7ATICI F M, ELOE P W. Two-point boundary value prob- lems for finite fractional difference equations [ J ]. Journal of Difference Equations and Applications, 2011, 17 (4) : 445 - 456.
  • 8GOODRICH C S. On positive solutions to nonlocal frac- tional integer-order difference equations [ J ]. Applicable Analysis and Discrete Mathematics, 2011, 5 ( 1 ) : 122 - 132.
  • 9PAN Y Y, HAN Z L, SUN S R, et al. The existence of solutions to a class of boundary value problems with frac- tional difference equations [ J ]. Advances in Difference Equations, 2013, 2013 (3) : 1642 - 1654.
  • 10CHEN F L, ZHOU Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem [J]. Discrete Dynamics in Nature and Society, 2013, 2013(9) :2013 -2022.

二级参考文献18

  • 1CHENG Y,ZHU G G.Existence offractional differential equations[J].J Math Anal Appl,2005,310:26-29.
  • 2ZHANG S Q.Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Electron J Diff Eqn,2006,36:1-12.
  • 3BENCHOHRA M,HAMANI S,NTOUYAS S K.Boundary value problems for differential equations with fractional order and nonlocal conditions[J].Nonlinear Analysis,2009,71(7/8):2391-2396.
  • 4WANG J H,XIANG H J,LIUZG.Positive solution for three-point boundary value problems of nonlinear fractional differential equation with p-Laplacian[J].Far East Journal of Applied Mathematics,2009,37(1):33-47.
  • 5LIANG S,ZHANG J.Positive solutions for boundary value problems of nonlinear fractional differential equation[J].Nonlinear Anslysis;Theory,Methods & Applications,2009,71(11):5545-5550.
  • 6BAI Z,LU H.Positive solutions for boundary value problem of nonliner fractional differential equation[J].Journal of Mathematical Analysis and Applications,2005,311(2):495-505.
  • 7PODLUBNY I.Fractional differential equations[M].New York:Academic Press,1999.
  • 8SAMKO S G,KILBAS A A,MARICHEV O I.Fractional integrals and derivatives:theory and applications[M].Yverdon,Switzerland:Gordon and Breach Science Publisher,1993:36-37.
  • 9KILBAS A A,MARZAN S.Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions[J].Differ Fan,2005,1141:84-89.
  • 10WANG J H,XIANG H J,LIU Z G.Positive solution to non-zero boundary values problem for a coupled system of nonlinear fractional differential equations[J].Internstional Journal of Differential Equations,2010:1-12.

共引文献18

同被引文献39

  • 1陈钢,王占山.连续时间递归神经网络的稳定性分析[J].沈阳理工大学学报,2007,26(2):1-4. 被引量:1
  • 2Ferreira R A C. Positive solutions for a class of boundary value problems with fractional q-differences[J]. Commput Math Appl, 2011, 61: 367-373.
  • 3Benchohra M, Hamani S, Ntouyas S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J]. Nonlinear Anal, 2009, 71: 2391-2396.
  • 4Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 5Atici F M, Sengul S. Modeling with fractional difference equations[J]. J Math Anal Appl, 2010, 369(1): 1-9.
  • 6Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 7Atici F M, Uyanik M. Analysis of discrete fractional operators[J]. Appl Anal Discrete Math, 2015, 9(1): 139-149.
  • 8Goodrich C S. On discrete sequential fractional boundary value problems[J]. J Math Anal Appl, 2012, 385(1): 111-124.
  • 9Goodrich C S. Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions[J]. J Differ Equ Appl, 2015, 21(5): 437-453.
  • 10Lv Weidong. Existence and uniqueness of solutions for a discrete fractional mixed type sum- difference equation boundary value problem[J]. Discrete Dyn Nature Soc, 2015, Article ID 376261, 10 pages.

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部