期刊文献+

基于Bloom Filter的去重方法研究 被引量:1

Research on Duplicated News Deletion Method Based on Bloom Filter
下载PDF
导出
摘要 在个性化新闻推荐系统中,文章去重是一个重要的模块,避免了同一篇文章被重复推荐的现象。在海量用户场景下,采用传统的基于队列的去重方法将会消耗大量的内存。Bloom Filter是一种空间效率很高的随机数据结构,适用于允许有一定误判率的场景。本文基于Bloom Filter,设计双Bloom Filter位数组结构和Bloom Filter位数组链结构。实验证明,基于Bloom Filter位数组链的去重方法,不仅大大降低了程序对服务器内存要求,而且具有较好的灵活性和扩展性。 In personalization news recommendation system,duplicated news deletion is an important part,which prevents the same news from being repeatedly recommended to users.Facing a large amount of users,the traditional duplicated news deletion method will consume a great deal of memory.Bloom Filter is a random data structure with high space efficiency and is used in the situations which allows false positive rate.In this paper,based on the bloom filter,we successively designed the double bit vector structure and the bit vector list structure for duplicated news deletion.The experimental results show that,with the benefit of the bit vector list structure,it not only greatly reduce the memory requirements,but also has better flexibility and expansibility.
出处 《计算技术与自动化》 2016年第1期95-100,共6页 Computing Technology and Automation
基金 十二五国家重大专项子课题项目(2011ZX05020-007-007)
关键词 信息超载 个性化推荐系统 BLOOM FILTER information overload personalization recommendation system Bloom Filter
  • 相关文献

参考文献11

  • 1罗玲.信息时代的信息超载影响及对策[J].现代情报,2011,31(6):36-38. 被引量:14
  • 2陈洁敏,汤庸,李建国,蔡奕彬.个性化推荐算法研究[J].华南师范大学学报(自然科学版),2014,46(5):8-15. 被引量:57
  • 3LIU J, DOLAN P, PEDERSEN E R. Personalized news rec- ommendation based on click behavior[C]//Proceedings of the 15th international conference on Intelligent user inter- faces. ACM, 2010: 31-40.
  • 4杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 5MITZENMACHER M. Compressed bloom filters[J]. IEEE/ACM Transactions on Networking (TON), 2002, 10(5): 604-612.
  • 6肖明忠,代亚非.Bloom Filter及其应用综述[J].计算机科学,2004,31(4):180-183. 被引量:31
  • 7TIAN X,CHENG Y. Bloom filter-based scalable multicast: methodology, design and application[J]. Network, IEEE, 2013, 27(6): 89-94.
  • 8BLOOM B H. Space/time trade-offs in hash coding with al- lowable errors[J]. Communications of the ACM, 1970, 13 (7) :422-426.
  • 9FAN L,CAO P,Almeida J, et al. Summary cache: a scalable wide- area web cache sharing protocol[J]. IEEE/ACM Transactions on Networking (TON), 2000, 8(3): 281-293.
  • 10王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,48(7):66-76. 被引量:334

二级参考文献71

共引文献504

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部