期刊文献+

探讨斐波纳契对虾树的优美性 被引量:1

Discussing the Gracefulness of Fibonacci Lobster Trees
原文传递
导出
摘要 具有完美匹配M的n阶树T是强优美的,如果对任意uv∈M,存在树T的一个优美标号f,使得f(u)+f(u)=n-1.给出了二分奇优美树和强优美树的概念,证明了斐波纳契对虾树是二分奇优美和强优美树. A tree T having n vertices and a perfect matching M is strongly graceful, if it has a graceful labeling f such that for any uv ∈ M, f(u) + f(v) = n - 1. We define the definition of bipartite odd-graceful trees and the strongly graceful trees. Then we prove that every Fibonacci lobster tree is bipartite odd-graceful and strongly graceful tree.
出处 《数学的实践与认识》 北大核心 2016年第7期181-186,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(61163037 61163054 61363060)
关键词 对虾树 斐波纳契对虾树 优美标号 二分奇优美 强优美 lobster tree Fibonacci lobster tree graceful labeling bipartite-odd graceful strongly graceful.
  • 相关文献

参考文献8

  • 1Bloom G S, and Golomb S W. Applications of numbered graphs[J]. Proceedings of the IEEE, 1977, 65(4): 562-570.
  • 2Gallian J A. A dynamic survey of graph labelling[J]. The Electronic Journal of Combinatorics, 2012, 12: 42-43.
  • 3Rosa Alexander. On certain valuation of the vertices of a graph[M]. Theory of Graphs (International Symposium in Rome in July 1966). New York, 1967: 349-355.
  • 4Gnanajothi R B. Topics in graph theory[D]. Thesis Madurai Kamaraj University, 1991.
  • 5Bondy J A, and Murty U S R. Graph Theory[M]. Springer London, 2008.
  • 6Cheng Hui, Yao Bing, Chen Xiang'en and Zhang Zhongfu. On graceful generalized spiders and caterpillars[J]. Ars Combinatoria, 2008, 87(2): 181-191.
  • 7Bing Yao, Hui Cheng, Ming Yao and Meimei Zhao. A Note on Strongly Graceful Trees[J]. Ars Combinatoria, 2009(92), 155-169.
  • 8Bela Bollobes. The Modern Graph Theory[M]. Springer-Verlag New York, 1998.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部