摘要
In recent years, surface-enhanced Raman spectroscopy (SERS) has developed rapidly and is used for the detection of molecules and biomolecules in liquids. However, few studies have focused on SERS using a water surface as the substrate. A floating metal film on water is desirable for an enhanced SERS performance. In this work, silver nanopartides (Ag NPs) encased in poly(vinylpyrrolidone) films (Ag-PVP films) were synthesized on the surface of an aqueous solution by room temperature electron reduction. A floating silver film on a water surface was thereby achieved and is reported for the first time. The synthesized Ag-PVP film is an excellent flexible substrate for SERS and has other potential appli- cations. Using the floating silver film as a flexible SERS substrate, 10-11 M of 4-aminothiophenol, 10^-6 M of riboflavin, 10^-9 M of 4-mercaptobenzoic acid, 10^-7 M of 4-mercaptophenol, and 10^-7 M of 4-aminobenzoic acid are identified, demonstrating potential use for the floating substrate in the liquid-phase detection of molecules.
In recent years, surface-enhanced Raman spectroscopy (SERS) has developed rapidly and is used for the detection of molecules and biomolecules in liquids. However, few studies have focused on SERS using a water surface as the substrate. A floating metal film on water is desirable for an enhanced SERS performance. In this work, silver nanopartides (Ag NPs) encased in poly(vinylpyrrolidone) films (Ag-PVP films) were synthesized on the surface of an aqueous solution by room temperature electron reduction. A floating silver film on a water surface was thereby achieved and is reported for the first time. The synthesized Ag-PVP film is an excellent flexible substrate for SERS and has other potential appli- cations. Using the floating silver film as a flexible SERS substrate, 10-11 M of 4-aminothiophenol, 10^-6 M of riboflavin, 10^-9 M of 4-mercaptobenzoic acid, 10^-7 M of 4-mercaptophenol, and 10^-7 M of 4-aminobenzoic acid are identified, demonstrating potential use for the floating substrate in the liquid-phase detection of molecules.
基金
This work was supported by the National Natural Science Foundation of China (No. 91334206). The authors thank Dr. Jeanne Wynn for her help in the use of English and Dr. Tao Xue for Raman measurement. The authors declare no competing financial interests.