期刊文献+

微注塑散热器流动诱导热导率变化的多尺度数值预测 被引量:1

Multi-scale numerical prediction of flow-induced thermal conductivity variation in micro-injection molded heat sink
下载PDF
导出
摘要 为进一步提高聚合物复合材料热导率,采用多尺度数值预测法研究了微注塑聚酰胺/碳纤维(PA66/CFs)散热器内部CF的流动诱导取向及其对制品热导率的影响规律。首先,利用Moldflow获取CF取向张量,并以Comsol Multiphysics构建与之对应的复合材料微元胞。利用正交实验法研究熔体温度、模具温度、最大注射压力及注射流率对微散热器热导率的影响。然后,对预测数据进行分析获得最优注塑参数组合。最后,对优化结果进行模拟实验,验证了多尺度数值预测法的有效性。结果显示:上述各参数重要程度由大到小依次排列为熔体温度、注射流率、最大注射压力和模具温度;最佳组合为熔体温度360℃、模具温度70℃、最大注射压力220 MPa及注射流率3×10–4 cm3/s。另外,流动诱导热导率变化最大值达0.36 W/(m·K),为基体热导率的1.5倍。得到的研究结果为从工艺调控的新角度来改善聚合物复合材料的导热性能提供了理论依据与数据支撑。 To further increase the thermal conductivity of polymer composites, a multi-scale numerical prediction method was applied to investigation of the CF flow induced orientation in micro-injection molded polyamide/carbon fibers (PA66/CFs) micro heat sink as well as its influence on the thermal conductivity of composites. Firstly, the Moldflow was used to determine the orientation tensor of the CF, the Comsol Multiphysics was used to develop the corresponding micro cell of the composite, and an orthogonal experiment method was utilized to study the effects of processing parameters including melt temperature, mold temperature, maximal injection pressure and injection flow rate, on the thermal conductivity. Then, on the basis of prediction data analysis, the optimal combination of the injection molding processing parameters was obtained. Finally, the optimal combination results were confirmed using simulated experiment, which verified the feasibility of the proposed multi-scale numerical prediction method. The results show that the influential parameters in descending order of importance are melt temperature, injection flow rate, maximal injection pressure, and mold temperature. Moreover, the obtained optimal combination of the investigated factors is identified as the melt temperature of 360 ℃, mold temperature of 70 ℃, maximal injection pressure of 220 MPa and the injection flow rate of 3 -10-4 cm3/s. Inaddition, the maximal variation of the flow-induced thermal conductivity is determined as 0.36 W/(m.K), which is 1.5 times that of polymer matrix. The findings in the present work provide theoretical basis and data supports for further increasing the thermal conductivity of polymer composites from a new viewpoint of processing control.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第3期566-573,共8页 Optics and Precision Engineering
基金 国家自然科学青年基金项目(No.51405451 51305406) 浙江省自然科学青年基金项目(No.LQ13E050008) 浙江省"钱江人才计划"资助项目(No.QJD1202005) 浙江省大学生"新苗人才计划"项目(No.2015R404034)
关键词 聚合物复合材料 微散热器 注塑成形 热导率 多尺度数值预测 polymer composite micro heat sink injection molding thermal conductivity multi-scale numericalprediction
  • 相关文献

参考文献16

  • 1张冬至.静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J].光学精密工程,2014,22(6):1562-1570. 被引量:8
  • 2YANG C,YIN X H,CHENG G M.Microinjection molding of microsystem components:New aspects in improving performance[J].Journal of Micromechanics and Microengineering,2013,23(9):093001.
  • 3刘汉,吴宏武.填充型导热高分子复合材料研究进展[J].塑料工业,2011,39(4):10-13. 被引量:34
  • 4马雅丽,刘文开,刘冲,杜立群.UV-LIGA技术在制作细胞培养器微注塑模具型腔中的应用[J].光学精密工程,2013,21(5):1228-1233. 被引量:6
  • 5MORISHITA T,MATSUSHITA M,KATAGIRI Y,et al..A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation[J].Journal of Materials Chemistry,2011,21(15):5610-5614.
  • 6TENG C C,MA C C M,CHIOU K C,et al..Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J].Composites Part B:Engineering,2012,43(2):265-271.
  • 7PAK S Y,KIM H M,KIM S Y,et al..Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J].Carbon,2012,50(13):4830-4838.
  • 8MARCONNET A M,YAMAMOTO N,PANZER M A,et al..Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density[J].ACS Nano,2011,5(6):4818-4825.
  • 9钟金明,伍晓宇,徐斌,罗烽,李积彬,阮双琛.线切割与真空热扩散焊组合工艺制备微模具[J].光学精密工程,2015,23(4):988-995. 被引量:5
  • 10LIU F,GUO C,WU X,et al..Morphological comparison of isotactic polypropylene parts prepared by micro-injection molding and conventional injection molding[J].Polymers for Advanced Technologies,2012,23(3):686-694.

二级参考文献58

  • 1杜立群,朱神渺,喻立川.后烘温度对SU-8光刻胶热溶胀性及内应力的影响[J].光学精密工程,2008,16(3):500-504. 被引量:8
  • 2崔峰,靖向萌,赵小林,丁桂甫,张卫平,陈文元.SU-8胶模去除技术[J].微细加工技术,2007(1):1-6. 被引量:6
  • 3周文英,张亚婷.本征型导热高分子材料[J].合成树脂及塑料,2010,27(2):69-73. 被引量:31
  • 4于同敏,宫德海.微型模具制造技术研究与发展[J].中国机械工程,2005,16(2):179-183. 被引量:19
  • 5SHEN SC, PANCT, WANGYR, etal. Fabri- cation of integrated nozzle plates for inkjet print head using microinjection process [J]. Sensors and Actuators A, 2006,127,241 -247.
  • 6VOI.KER P, ERIC G, STEFAN G, el al. Micro- injection moulding for the manufacturing of medical devices [J]. Medical Device Manufacturing & Technololzy, 2006,25-27.
  • 7RUZZU A, MATTHIS B. Swelling of PMMA-structures in aqueous solutions and room tempera- ture Ni-electroforming [J]. Microsystem Technol- ogies ,2002,8,116-119.
  • 8WAGNER H D. Nanocomposites: paving the way to stronger materials [J]. Nat. Nanotech., 2007, 2:742-744.
  • 9AVOURIS P, CHEN Z, PEREBEINOS V. Carbon-based electronics [J]. Nat. Nanotech., 2007,2:605-615.
  • 10BAUGHMAN R H,ZAKHIDOV A A,HEER W A. Carbon nanotubes-the route toward applications [J]. Science, 2002, 279: 787-792.

共引文献49

同被引文献4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部