期刊文献+

基于经验模态分解/高阶统计法实现微机械陀螺降噪 被引量:3

MEMS gyro denoising by EMD-HOS method
下载PDF
导出
摘要 针对微机电系统(MEMS)陀螺存在的非线性、非平稳噪声,提出了应用经验模态分解/高阶统计(EMD-HOS)的降噪方法对MEMS陀螺进行降噪。首先,采集MEMS陀螺输出信号,根据EMD算法将信号分解成本征模态函数(IMF)。采用Bootstrap技术分别估计各IMF的峰度值,进行高斯特性检验,滤除高斯IMF。接着,使用方差聚合法分别计算IMF的Hurst指数,根据Hurst指数计算阈值,对各IMF进行软阈值处理。将阈值处理后的剩余IMF进行重构,达到降噪的目的。最后,通过交叠式Allan方差分析对滤波前后数据进行处理,绘制Allan方差与相关时间关系曲线,利用非线性最小二乘拟合方法,计算陀螺噪声各项指标。实验表明,EMD-HOS和软阈值处理能够有效地对MEMS陀螺降噪,其信噪比提高了5.6 d B,各项陀螺随机噪声关键指标提高近一个量级。 For the nonlinear and non-stationary signals existing in a MEMS (Micro-electronic-mechanic system)gyro, a denosing method based on the Empirical Mode Decomposition/High Order Statistic (EMD/HOS) was proposed. Firstly, the MEMS gyro signals were captured, and they were decomposed into a cluster of intrinsic mode function (IMF) based on the proposed EMD/HOS sift process. The IMF peak values were estimated by using Bootstrap technology, respectively, to verify its Gaussianity and the Gaussian components were filtered directly. Then the variance algorithm was used to calculate the Hurst exponent of the IMF. According to the Hurst exponent, the threshold was calculated and the each IMF was processed by soft threshold technology. Finally, the remained IMFs after threshold processing were reconstructed to implement the signal denoise. Moreover, the Allan variance algorithm was introduced to analyze the gyro noise, and the characteristic of gyro noise could be observed via the curve of related time and root Allan variance. The conclusion is that EMD-HOS and soft threshold technology decrease the noise of MEMS obviously, the SNR is increased by 5.6 dB, and each indicator ofMEMS; gyro noise is improved almost by one order.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第3期574-581,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51305421)
关键词 MEMS陀螺 信号消噪 经验模态分解 高阶统计 本征模态函数 软阈值 HURST指数 MEMS gyro signal denoising Empirical Mode Decomposition(EDM) High Order Statistic(HOS) Intrinsic Mode Function (IMF) soft threshold Hurst exponent
  • 相关文献

参考文献20

  • 1喻敏,王斌,王文波,郑雷.联合EMD与核主成分分析的激光陀螺信号消噪[J].武汉大学学报(信息科学版),2015,40(2):233-237. 被引量:7
  • 2HUANG N E,SHEN Z,LONG S R,et al..The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.Royal Soc.London A,1998,454:903-995.
  • 3GEORGE T,THOMAS D X.Signal de-noising using empirical mode decomposition and higher order statistics[J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2011,4(2):91-101.
  • 4WENG B,VELASCO M B,BARNER K E.ECG de-noising based on the empirical mode decomposition.Proceedings of the 28th IEEE EMBS Annual International Conference,New York,2006:795-801.
  • 5WU Z,HUANG N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proc.Roy.Soc.London A,2004,460:1597-1611.
  • 6FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter bank[J].IEEE Signal Process,2004,11(2):112-114.
  • 7PATRICK F,GABRIEL R,PAULO.Empirical Mode Decomposition as a Filter Bank[C].IEEE SIGNAL PROCESSING LETTERS,2004,11(2):112-114.
  • 8DONOHO D L.De-noising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627.
  • 9KHALDI K,ALOUANE M T,BOUDRAA A O.A new EMD de-noising approach dedicated to voiced speech signals[C].Signals,Circuits and Systems,2008,2nd International Conference,2008.SCS,2008,2(1):1-5.
  • 10ZOGBIY A M,BOASBASB B.The bootstrap and its application in signal processing[J].IEEE Signal Processing Magazin,1998,15(1):56-76.

二级参考文献45

共引文献31

同被引文献29

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部