期刊文献+

金属氧化物纳米颗粒在水环境中的团聚与沉降 被引量:5

Aggregation and Sedimentation of Metal Oxides Nanoparticles in Aquatic Environment
下载PDF
导出
摘要 采用吸光度动态分析、动态光散射(DLS)及电泳淌度等技术,对比了100 mg/L CuO、ZnO、SiO_2纳米颗粒(NPs)在:(1)无机盐(离子强度IS=18 mmol/L)模拟溶液;(2)天然有机质(NOM,TOC=8.96 mg/L)模拟溶液;(3)无机盐(IS=18 mmol/L)-NOM(TOC=8.96mg/L)模拟溶液;(4)太湖水(IS=4.5 mmol/L,TOC=2.42 mg/L)等介质中的48 h沉降动力学、水力学直径分布及Zeta电位。结果表明,NPs在水环境中的团聚与沉降不但取决于水化学因素,同时取决于NPs自身的化学性质。CuO NPs在太湖水与NOM模拟溶液中呈现类似的团聚与沉降现象,主要受NOM与表面Cu_(2+)的螯合作用主导。ZnO NPs的团聚与沉降主要受IS控制,因而在太湖水与IS模拟溶液中展现相似的行为。Si O2NPs具有对NOM较低的吸附能力和较小的Hamaker常数等内在特性,其在太湖水与模拟溶液中具有独特的团聚与沉降行为,并不取决于NOM或IS等水环境条件。在水环境中,这3种NPs都将通过团聚与沉降快速迁移至底泥,对水生生态造成潜在风险。 Via time-resolved optical absorbency,dynamic light scattering(DLS),as well as electrophoretic mobility analysis,the 48-h sedimentation kinetics,the distributions of hydrodynamic diameters,and the Zeta potentials of respective100 mg/L CuO,ZnO and SiO2nanoparticles(NPs)in simulative waters containing inorganic salts with ionic strength(IS)as18 mmol/L,natural organic matter(NOM,TOC=8.96 mg/L),or mixed IS(18 mmol/L) and NOM(8.96 mg/L TOC),were determined and compared with those in Lake Taihu water(IS=4.5 mmol/L,TOC=2.42 mg/L). The results indicate that aggregation and sedimentation of NPs depended not only on the water chemistry but also on their chemical properties of the NPs. The similar observations in Lake Taihu and NOM-containing simulative waters suggested that NOM controlled the aggregation and sedimentation of CuO NPs,probably through chelation of NOM with surface Cu-(2+). ZnO NPs were aggregated and sedimented with the presence of IS,hence similar performances in Lake Taihu water and simulative waters with IS were exhibited. The peculiar behaviors of SiO2 NPs in Lake Taihu and simulative waters manifested the predominance of its intrinsic properties over the aquatic factors(eg.,NOM and IS)in controlling the aggregation and sedimentation of SiO2 NPs.This may be attributable to low NOM adsorption capacity by the NPs and their small Hamaker constant. The three NPs will be largely transferred to the sediment compartment of water bodies via aggregation and sedimentation,and pose potential risks to aquatic ecosystem.
出处 《环境科学与技术》 CAS CSCD 北大核心 2016年第3期17-22,共6页 Environmental Science & Technology
基金 国家自然科学基金(21377094)
关键词 金属氧化物 纳米颗粒 水环境 团聚与沉降 生态风险 metal oxides nanoparticles aquatic environment aggregation and sedimentation ecological risks
  • 相关文献

参考文献20

  • 1Keller A A, McFerran S, Lazareva A, et al. Global life cycle releases of engineered nanomaterials[J]. Journal of Nanopar- ticle Research, 2013,15(6) : 1692-1708.
  • 2Maynard A D, Aitken R J, Butz T, et al. Safe handling of nanotechnology[J]. Nature, 2006,4404(7117) : 267-269.
  • 3Keller A A, Lazareva A. Predicted releases of engineered nanomaterials: from global to regional to local [J]. Envi- ronmental Science & Technology Letters, 2014,1 (1):65- 70.
  • 4Bann A, Hartmann N B, Grieger K, et al. Ecotoxicity of engineered nanoparticles to aquatic invertebrates:a brief review and recommendations for future toxicity testing [J]. Ecotoxicology, 2008,17(5) :387-395.
  • 5Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus [J]. Chemosphere, 2008,71(7) : 1308-1316.
  • 6Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi[J]. Ecotoxicology, 2008,17(5) :372-386.
  • 7Lowry G V, Gregory K B, Apte S C, et al. Transformations of nanomaterials in the environment [J ]. Environmental Science & Technology, 2012,46(13) : 6893-6899.
  • 8Nowack B, Ranville J F, Diamond S, et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment[J]. Environmental Toxicology and Chemi- stry, 2012,31 ( 1 ) : 50-59.
  • 9方华,沈冰冰,孙宇心,王媛,陆继来.水中富勒烯(C_(60))纳米颗粒凝聚动力学研究[J].环境科学与技术,2014,37(4):11-14. 被引量:2
  • 10Zhang Y, Chen Y, Westerhoff P, et al. Stabilitycommercial metal oxide nanoparticles in water[J]. Water Research, 2008,42 (8/9) : 2204-2212.

二级参考文献18

  • 1White House. National Nanotechnology Initiative: Leading to the Next Industrial Revolution [R]. The White House, Office of the Press Secretary, Washington, DC.
  • 2Osawa E. Perspective of fullerene nanotechnology [J]. Mater ManufProcess, 2002,17(6):881-883.
  • 3Tagmatarchis N, Shnohara H. Fullerenes in medical chemistry and their biological applications[J]. Mini Rev Med Chern, 2001, l( 4): 339-348.
  • 4Fortner J D, Lyon D Y, Sayes C M, et al. CUI in water: Nanocrystal formation and microbial response [J]. Environ Sci Technol, 2005, 39(11):4307-4316.
  • 5Cheng X K, Kan AT, Tomson MB. Naphthalene adsorption and desorption from aqueous CUI fullerene [J]. Journal of Chemical and Engineering Data, 2004, 49 (3) :675-683.
  • 6Lyon D Y, Fortner J D, Sayes C M, et al. Bacterial cell association and antimicrobial activity of a CUI water suspension [J]. Environmental Toxicology and Chemistry, 2005, 24, (11):2757-2762.
  • 7Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (CUI) nanoparticles [J]. Environ Toxicol Chern, 2006, 25( 4): 1132-1137.
  • 8Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996,273(5274): 483-487.
  • 9Andrievsky G V, Kosevich M V, Vovk OM, et al. On the production of an aqueous colloidal solution of fullerenes[J]. J Chern Soc Chern Commun, 1995, (2): 1281-1282.
  • 10Lyon D Y, Adams L K, Falkner J C, et al. Antimicrobial activity of fullerene water suspensions: effects of preparation method and particle size[J]. Environ Sci Technol, 2006, 40 ( 14) : 4360-4366.

共引文献1

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部