期刊文献+

Rao-Blackwellized粒子势均衡多目标多伯努利滤波器 被引量:3

Rao-Blackwellized particle cardinality balanced multi-target multi-Bernoulli filter
下载PDF
导出
摘要 由于多伯努利滤波器直接近似递推了多目标状态的后验概率密度,使得多目标跟踪问题在基于随机有限集理论框架下的求解及目标状态的估计显得更为直观.本文针对一个状态可分解(线性/非线性)的状态空间模型,分析基于Rao-Blackwell定理的滤波估计方法,结合噪声的去相关构造线性状态的滤波方程.文中详细推导并提出Rao-Blackwellized粒子势均衡多目标多伯努利滤波器的一般实现形式,包括给出多伯努利非线性状态粒子滤波的实现形式,并结合非线性滤波结果给出多伯努利线性状态的递推滤波公式.本文提出的滤波器实现方法能够在更低维的状态空间上进行采样,滤波器的整体跟踪性能得到提高.多目标跟踪的仿真实验结果验证了该算法的有效性. The multi-Bernoulli filter propagates approximately the multi-target posterior density so that solving target tracking problem and extracting target state based on random finite set are more tractable. Considering a state space model whose state can be divided into linear and nonlinear part, this paper analyzes the Rao-Blackwell theorem based filtering algorithm. Then, using the corresponding algorithm of decorrelation of state noises, we presents the filtering formula for linear state. Moreover, this paper proposes a Rao-Blackwellized particle cardinality balanced multi-target multi-Bernoulli filter. This algorithm firstly implements the particle filtering for multi-Bernoulli nonlinear state, and the filtering formula of multi-Bernoulli linear state is derived afterwards based on the nonlinear filtering result. The proposed filter can sample particle in a lower dimensional state space and improve the overall target tracking performance. The simulation results of the multi-target tracking show the effectiveness of the proposed approach.
作者 陈辉 韩崇昭
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第2期146-153,共8页 Control Theory & Applications
基金 国家重点基础研究发展计划("973"计划)(2013CB329405) 国家自然科学基金创新研究群体项目(61221063) 国家自然科学基金项目(61370037 61005026 61473217) 甘肃省高等学校科研项目(2014A–035) 甘肃省自然科学基金(1506RJZA090)资助~~
关键词 多目标跟踪 多伯努利 随机有限集 粒子滤波 Rao-Blackwell multi-target tracking multi-Bernoulli random finite set particle filter Rao-Blackwell
  • 相关文献

参考文献22

  • 1MAHLER R P S. Advances in Statistical Multisource-Multitarget In- formation Fusion [M]. Norwood, MA: Artech House, 2014:120 - 122.
  • 2MAHLER R P S. Multitarget Bayes filtering via first-order multi- target moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152- 1178.
  • 3MAHLER R P S. PHD filters of higher order in target number [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523 - 1543.
  • 4MAHLER R P S. Statistical Multisource Multitarget Information Fu- sion [M]. Norwood, MA: Attech House, 2007:655 - 667.
  • 5VO B T, VO B N, CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations [J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409 - 423.
  • 6CHONG N, WONG S, VO B T, et al. Multiple moving speaker track- ing via degenerate unmixing estimation technique and cardinality bal- anced multi-target multi-bernoulli filter (duet-cbmember)[C] //Pro- ceedings of the 9th Intelligent Sensors, Sensor Networks and Infor- mation Processing (ISSNIP). Singapore: IEEE, 2014, 4:1 - 6.
  • 7HOSEINNEZHAD R, VO B N, VO B T, et al. Bayesian integra- tion of audio and visual information for multi-target tracking using a CB-MeMBer filter [C]//Proceedings of the 2011 IEEElnternation- al Conference on Acoustics, Speech and Signal Processing (ICASSP). Melbourne: IEEE, 2011, 5:2300 - 2303.
  • 8YANG J L, GE H W. An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation [J]. Signal Processing, 2013, 93(9): 2510 - 2515.
  • 9ZHANG G, LIAN F, HAN C. CBMeMBer filters for nonstandard targets, I: Extended targets [C] //Proceedings of the 15th Internation- al Conference on Information Fusion (FUSION). Salamanca: IEEE, 2014, 7:1 - 6.
  • 10ZHANG G, LIAN F, HAN C. CBMeMBer filters for nonstandard tar- gets, II: Unresolved targets [C] //Proceedings of the 15th Internation- al Conference on Information Fusion (FUSION). Salamanca: IEEE, 2014, 7:1 - 6.

二级参考文献21

  • 1彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 2GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian-mixture PHD filter [R]. Link6pings Uni- versitet: Technical Report from Automatic Control, 2011: 1 - 15.
  • 3MAHLER R. Multitarget bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Electronic Sys- tems, 2003, 39(4): 1152 - 1178.
  • 4MAHLER R. Statistical Multisource-Mutitarget Information Fu- sion [M]. Norwood, MA, USA: Artech House, 2007.
  • 5VO B T, VO B N, CANTON A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations [J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409 - 423.
  • 6GILHOLM K, SALMOND D. Spatial distribution model for tracking extended objects [J]. Proceedings of Radar, Sonar and Navigation, 2005, 152(5): 364- 371.
  • 7GILHOLM K, GODSILL S, MASKELL S, et al. Poisson models for extended target and group tracking [C] //Proceedings of SP1E Con- ference on Signal and Data Processing of Small Targets. Washington: SPIE, 2005:230 - 241.
  • 8MAHLER R. PHD filters for nonstandard targets, l_Extended tar- gets [C] //Proceedings of the International Conference on Informa- tion Fusion. New York: IEEE, 2009:915 - 921.
  • 9GRANSTROM K, LUNDQUIST C, ORGUNER U. A Gaussian mix- ture PHD filter for extended target tracking [C] //Proceedings of the International Conference on Information Fusion. New York: IEEE, 2010:1 - 8.
  • 10GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Ganssian-Mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268 - 3286.

共引文献21

同被引文献11

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部