期刊文献+

基于GMM和贝叶斯推理的多模态过程运行状态评价 被引量:4

Operation performance assessment for multimode processes based on GMM and Bayesian inference
下载PDF
导出
摘要 为使综合经济效益最大化,生产过程应保持在最优运行状态等级.针对多模态过程运行状态等级优劣判断问题,提出一种运行状态等级评价方法.该方法对同一运行状态等级的多模态数据建立一个高斯混合模型(Gaussian mixture model,GMM),确保特征提取的准确性,避免模态划分问题.至于在线评价策略,本文采用贝叶斯推理,确定当前运行状态属于各等级的后验概率.并引入滑动窗口,判定当前运行状态等级,有效解决多模态过程运行状态在线评价问题.针对"非优"运行状态,本文提出一种基于变量偏导数的贡献计算方法,对导致过程运行状态等级"非优"的原因变量进行追溯.最后,通过田纳西–伊斯曼(Tennessee–Eastman,TE)过程验证所提方法的有效性. To maximize the comprehensive economic benefits of enterprises, the production process ought to be kept in the optimal operating performance grade. To solve the problem of process state judgement for multimode processes, a novel operation performance assessing approach is proposed in this paper. One Gaussian mixture model(GMM) is established for a same running grade with multi modes in this article, ensuring the precision of feature extraction and avoiding mode division. As to online evaluation strategy, Bayesian inference is applied to calculate the Posterior probability of the current performance belonging to each grade. Sliding window is then introduced to help determine the running state. The proposed method turns to be an effective solution to the multi-modal process operating performance optimality online assessment.A novel variable contribution calculation technique is subsequently put forward, in the form of partial derivatives, which is successfully applied to cause identification when the performance is assessed to be non-optimal. Finally the validity of the proposed approach is illustrated through TE process.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第2期164-171,共8页 Control Theory & Applications
基金 国家自然科学基金项目(61533007 61374146 61174130 61304121)资助~~
关键词 多模态过程 运行状态评价 非优原因追溯 高斯混合模型 贝叶斯理论 multimode process operating performance assessment nonoptimal cause identification Gaussian mixture model(GMM) Bayesian inference
  • 相关文献

参考文献20

  • 1王姝,常玉清,杨洁,王福利,冯淑敏.时段划分的多向主元分析间歇过程监测及故障变量追溯[J].控制理论与应用,2011,28(2):149-156. 被引量:20
  • 2SRINIVASAN R, VENKATASUBRAMANIAN V. Multi-perspec- tive models for process hazards analysis of large scale chemical processes [J]. Computers and Chemical Engineering, 1998, 22(12): S961 - S964.
  • 3MORAN J, GRANADA E, MIGUEZ J L, et al. Use of grey relational analysis to assess and optimize small biomass boilers [J]. Fuel Pro- cessing Technology, 2006, 87(2): 123 - 127.
  • 4XU G, YANG Y, LU S, et al. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process [J]. Energy Policy, 2011, 39(5): 2343 - 2351.
  • 5ESEN H, INALL! M, SENGUR A, et al. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system [J]. Energy and Buildings, 2008, 40(6): 1074 - 1083.
  • 6JIANG Y, XU Z, YIN H. Study on improved BP artificial neural net- works in eutrophication assessment of China eastern lakes [J]. Jour- nal of Hydrodynamics, 2006, 18(3): 528 - 532.
  • 7GUO L, GAO J, YANG J, et al. Criticality evaluation of petrochem- ical equipment based on fuzzy comprehensive evaluation and a BP neural network [J]. Journal of Loss Prevention in the Process Indus- tries, 2009, 22(4): 469 - 476.
  • 8LIANG Z, YANG K, SUN Y, et al. Decision support for choice opti- mal power generation projects: fuzzy comprehensive evaluation mod- el based on the electricity market [J]. General Information, 2006, 34(17): 3359 - 3364.
  • 9WEI B, WANG S, LI L. Fuzzy comprehensive evaluation of district heating systems [J]. Energy Policy, 2010, 38(10): 5947 - 5955.
  • 10YI G, QIN H. Fuzzy comprehensive evaluation of fire risk on high- rise buildings [J]. Procedia Engineering, 2011, 11(1): 620 - 624.

二级参考文献11

  • 1JACKSON J E. A User's Guide to Principal Components[M]. New York: Wiley, 1991.
  • 2KOURTI T, MACGREGOR J F. Process analysis, monitoring and diagnosis, using multivariate projection methods[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 28(19): 3 - 21.
  • 3WANG X Z. Data Mining and Knowledge Discovery for Process Monitoring and Control[M]. London: Springer, 1999.
  • 4NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. American Institute of Chemical Engineers Journal, 1994, 40(8): 1361 - 1375.
  • 5NOMIKO$ P, MACGREGOR J E Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent LabomtorySystems, 1995, 30(1): 97- 108.
  • 6NOMIKOS P, MACGREGOR J E Multivariate SPC charts for monitoring batch processes[J]. Technometrics, 1995, 37( 1 ): 41 - 59.
  • 7KOSANOVICH K A, PIOVOSO M J, DAHL K S. Multi-way PCA applied to an industrial batch process[C] //Proceedings of American Control Conference. Baltimore, USA: IEEE, 1994:1294 - 1298.
  • 8LU N Y, GAO F R, WANG F L. A sub-PCA modeling and online monitoring strategy for batch processes[J]. American Institute of Chemical Engineers Journal, 2004, 50(1): 255 - 259.
  • 9ZHAO C H, WANG F L, LU N Y, et al. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes[J]. Journal of Process Control, 2007, 17(9): 728 - 741.
  • 10WESTERHUIS J A, KOURTI T, MACGREGOR J E Comparing alternative approaches for multivariate statistical analysis of batch process data[J]. Journal of Chemometrics, 1999, 13(3/4): 397-413.

共引文献19

同被引文献22

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部