期刊文献+

基于卷积神经网络的服装种类识别 被引量:2

Classification of Clothing Type Based on Convolutional Neural Network
下载PDF
导出
摘要 随着网络购物和电子商务的普及,越来越多的电商平台推出了移动端的应用,这其中不少都集成图片搜索的功能,根据输入的图片判断商品的种类进行搜索。基于卷积神经网络的服装种类识别正是为了解决其中对服装的分类而提出的方法,具体包括数据预处理、卷积运算和Softmax回归模型训练三个步骤。在来自真实购物平台的服装图片组成的实验数据集上,能够保持较高的识别准确率,在服装识别问题上具有很大的优势。 With the prevalence of online shopping and Electronic Commerce, increasing number of e-commerce companies have released their applications embedded on mobile devices, some of which are integrated with image searching function. Users can search kinds of goods with input image. Classification of clothing type based on convolutional neural network rightly resolves the classification problems on clothing types. This method contains three steps: pre-processing, convolution and Softmax regression. It shows a good classification accu-racy on the dataset collecting from reality shopping platform, which makes it have great strength on clothing type recognition.
作者 范荣
出处 《现代计算机》 2016年第6期29-32,共4页 Modern Computer
关键词 服装种类识别 卷积神经网络 Softmax回归 Clothing Type Classification Convolutional Neural Network Softmax Regression
  • 相关文献

参考文献5

  • 1刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,31(7):1921-1930. 被引量:291
  • 2Jake Bouvrie. Notes on Convolutional Neural Networks[Z]. USA: Milliman,MIT,2006.
  • 3Friedman, Jerome; Hastie, Trevor; Tibshirani, Rob. Regularization Paths for Generalized Linear Models Via Coordinate Descent[J]. Journal of Statistical Software, 2010,33 ( 1 ).
  • 4Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]. NIPS, 2012.
  • 5张佳康,陈庆奎.基于CUDA技术的卷积神经网络识别算法[J].计算机工程,2010,36(15):179-181. 被引量:9

二级参考文献108

  • 1肖柏旭,张丽静.基于分流抑制机制的卷积神经网络人脸检测法[J].计算机应用,2006,26(B06):46-48. 被引量:4
  • 2Zhang Ying,Yang Xuejun,Wang Guibin,et al.Scientific Computing Applications on a Stream Processor[C]//Proc.of IEEE Int'l Symp.on Performance Analysis of Systems and Software.Austin,Texas,USA:[s.n.],2008:105-114.
  • 3Luebke D.CUDA:Scalable Parallel Programming for High-performance Scientific Computing[C]//Proc.of the 5th IEEE Int'l Symp.on Biomedical Imaging:From Nano to Macro.Paris,France:[s.n.],2008:836-838.
  • 4NVIDIA Corporation.NVIDIA CUDA Compute Unified Device Architecture Programming Guide 2.0[EB/OL].(2008-06-07).http:// developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf.
  • 5Lawrence S,Giles C L,Tsoi A C.Convolutional Neural Networks for Face Recognition[C]//Proc.of IEEE Computer Society Conference on CVPR.San Francisco,California,USA:[s.n.],1996:217-222.
  • 6HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 7BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 8VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 9LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 10TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.

共引文献298

同被引文献10

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部