期刊文献+

表面部分电极含金属芯压电纤维气流传感特性研究 被引量:4

Investigations on the Sensitivity of Airflow Using Partially Coated Metal Core Piezoelectric Fiber
下载PDF
导出
摘要 含金属芯压电纤维可以模仿昆虫的毛发感受器,感知周围环境的气流变化。在含金属芯压电纤维的部分纵向表面涂镀电极,制备了表面部分电极含金属芯压电纤维传感器PMPF(Partial electrode of Metal core Piezoelectric Fiber)。基于平均电荷法,建立了悬臂梁结构PMPF准静态气流传感模型,分析了PMPF产生的电荷值与表面电极分布角度、纤维长度、气流流速和气流方向的关系。搭建了实验系统,测试了PMPF对冲击气流的响应,验证了理论模型。结果表明,PMPF的传感信号和气流流速成指数关系,和气流方向成"8"字形关系。PMPF具有气流速度和方向的传感性能。 Metal core piezoelectric fiber can simulate insects' hair flow sensors,and measure the airflow changes ofthe surrounding environment. In this paper,we coated part of the longitudinal surface of the metal core piezoelectricfiber with electrode,and prepared partial coated metal core piezoelectric fibers(PMPF). Based on the averagecharge method,the cantilever PMPF quasi-static airflow sensor model was established,the relationship between thetwo electrodes' charge value on PMPF and the surface electrode distribution angle and the length of fiber were ana-lyzed. The experimental platform of cantilever PMPF airflow sensor was established,and the response of PMPFwhen impact airflow acted on was tested whose results verified the theoretical model. The results show that the out-put signal of the PMPF has a index relation with the air flow velocity,and a "8" glyph relation with the air flow direc-tion. PMPF has the properties of sensing the airflow velocity and direction.
出处 《传感技术学报》 CAS CSCD 北大核心 2016年第2期195-201,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金面上项目(51275447)
关键词 压电纤维 金属芯 表面电极 气流传感 piezoelectric fiber metal core surface electrode airflow sensor
  • 相关文献

参考文献21

  • 1Landolfa M A,Miller J P. Stimulus- Response Properties of Crick-et Cereal Filiform Receptors [j]. Comput Physiol A, 1995,177:749-757.
  • 2Dagamesh A M K, Lammerink T S J, Kolster M L, et al. Dipole-Source Localization Using Biomimetic Flow- Sensor Arrays Posi-tioned as Later-Line System [J]. Sensors and Actuaors A, 2010,162(2):355-360.
  • 3Chen N N, Tucker C, Engel J M,et al. Design and Characteriza-tion of Artificial Haircell Sensor for Flow Sensing with UltrahighVelocity and Angular Sensitivity [J]. Microelectromech Systems,2007,16(5):999-1014.
  • 4Tao J L, Yu X. Hair Flow Sensors: from Bio-Inspiration to Bio-Mimicking—A Review[j]. Smart Structures and Materials,2012,21,113001:1-23.
  • 5Chen N N,Tucker C,Engel J M,et al.Design and Characterizationof Artificial Haircell Sensor for Flow Sensing with Ultrahigh Ve-locity and Angular Sensitivity [j]. Microelectromech Systems.
  • 6Stocking J B, Eberhardt W C, Shakhsheer Y A, et al. A Capaci-tance Based Whisker-Like Artificial Sensor for Fluid Motion Sens-ing[j]. IEEE Sensors,2010:2224-2229.
  • 7Barbier C, Humphrey J A C, Paulus J, et al. Design, Fabricationand Testing of a Bioinspired Hybrid Hair- Like Fluid Motion Sen-sor Array Proc[j]. ASME Int Mechanical Engineering Congr Ex-position ,2007(8) : 1319-1324(parts A and B).
  • 8Sarles S A,Madden J D W,Leo D J. Hair Cell Inspired Mechano-transduction with a Gel-Supported, Artificial Lipid Membrane [j].Soft Mater,2011,7( 10) :4644-4653.
  • 9Jerome C, Thomas S,Gijs K. Why do Insects Have Such a HighDensity of Flow-Sensing Hairs? Insights from the Hydromechan-ics of Biomimetic MEMS Sensors [J]. Journal of The Royal Soci-eth Interface,2010,7(51): 1487-1495.
  • 10Fan Z F, Chen J,Zou J, el al. Design and Fabrication of ArificialLateral Line Flow Sensors [J]. Journal of Micromechanics and Mi-croengineering ,2002,12:655-661.

二级参考文献29

  • 1Chen G Y, Thundat T, Wachter E A, et al. Adsorption-Induced Surface Stress and Its Effects on Resonance Frequency of Micro- cantilevers [ J]. J. Appl. Phys, 1995,78 (8) :3618-3622.
  • 2Chen G Y, Wamlack R J, Huang A, et al. Harmonic Response Of Near-Contact Scanning Force Microscopy[ J ]. J. Appl. Phys, 1995, 78(3) :1465-1469.
  • 3Chen G Y,Warmack R J,Thundat T,et al. Resonance Response of Scanning Force Microscopy Cantilevers [ J ]. Rev. Sci. Instrum, 1994,65 ( 8 ) : 2532-2537.
  • 4Thundat T,Warmack R J,Chen G Y, et al. Thermal and Ambient- Induced Deflections of Scanning Force Microscope Cantilevers[ J].Appl. Phys. Lett, 1994,64 ( 21 ) : 2894- 2896.
  • 5Lu P,Lee H P,Lu C,et al. Surface Stress Effects on the Resonance Properties of Cantilever Sensors [ J ]. Phy. Rev. B. 2005, 72,085405.
  • 6Huang G Y, Gao W, Yu S W. Model for the Adsmqption-Induced Change in Resonance Frequency of a CantiLever [ J ]. AppL Phys. Lett. 2006,89,043506.
  • 7Zhang J Q,Yu S W,Feng X Q. Theoretical Analysis of Resonance Frequency Change Induced hy Adsorption[J]. J. Phys. Lett. 2008, 41,125-306.
  • 8YI X,Duan H L. Surface Stress Induced by Interactions of Adsorbates and Its Effect on Deformation mad Frequency of Microcantilever Sensors[J]. J. Mech. Phys. Solids. 2009,57(8) : 1254-1266.
  • 9Muller P, Kern R. About the Measurement of Absolute Isotropie Surfaces of Crystal [ J ]. Surf. Sci. 1994,301 ( 1-3 ) : 386-398.
  • 10Darling Don W,Thomas Thundat. Simulation of Adsorption Induced Stress of a Micro-Cantilever Sensor [ J ]. J. Appl. Phys,2005,97 (4): 3526-1-3526-5.

共引文献4

同被引文献19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部