期刊文献+

基于网络编码的无线网络容量分析 被引量:3

Research on the Capacity of Wireless Networks Based on the Network Coding
下载PDF
导出
摘要 无线网络容量一直是无线网络领域的研究热点,而网络编码通过赋予中间节点对接收数据包进行编码、组合的能力,可以有效提高网络容量,达到最大流—最小割定理确定的理论上限。本文在Gupta和Kumar提出的信号干扰噪声比模型基础上,首先分析网络节点均匀分布时发送节点与目的节点进行多跳传输的无线网络容量计算方法;接着推导出了基于网络编码的无线网络容量计算公式,并利用MATLAB中求解线性规划问题的函数linprog()求解网络最大流及各链路流量,以此求出无线网络容量上界。通过对无线网络容量上界进行MATLAB仿真,得到如下结论:无线网络容量上界随节点数量的增加呈现先增加后减少的趋势;且当节点数量趋于无穷大时,网络容量趋于零;与传统的存储转发模式相比,采用网络编码有利于提高网络容量。 The network capacity has been a hotspot in the field of wireless network. Network coding has the advan-tage that the intermediate node can encode the data it receives,which can efficiently improve end-to-end through-put. In this paper,we first analyze the multi-hop capacity of wireless network based on the signal-to-interference ra-tio model proposed by Gupta. Then an algorithm of wireless network capacity based on the network coding is pro-posed and to compute the upper bound of the network capacity,we obtain the network maximum flow and each linkflow by utilizing the method which solves linear programming problems in the MATLAB. The simulation experi-ments show that the capacity using network coding is higher than that of traditional routing strategy and the upperbound of network capacity has a trend of first increasing and then decreasing with the number of nodes.
出处 《传感技术学报》 CAS CSCD 北大核心 2016年第1期116-121,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61372087)
关键词 无线网络 网络容量 网络编码 最大流—最小割定理 wireless network network capacity network coding max-flow min-cut theorem
  • 相关文献

参考文献17

  • 1Gupta Piyush,Kumar P R.The Capacity of Wireless Networks[J].IEEE Transactions on Information Theory,2000,46(2):388-404.
  • 2Hwang Y J,Seong Lyun Kim.The Capacity of Random Wireless Networks[J].IEEE Transactions on Wireless Communications,2008,7(12):4968-4975.
  • 3Dousse O,Franceschetti M,Thiran P.On the Throughput Scaling of Wireless Relay Networks[J].IEEE Transactions on Informa- tion Theory,2006,52(6):2756-761.
  • 4周凯,孟利民,华惊宇.基于Grover路由策略的无线传感网络剩余容量构造与研究[J].传感技术学报,2015,28(2):249-253. 被引量:9
  • 5Kannan S,Viswanath P.Capacity of Multiple Unicast in Wireless Networks:A Polymatroidal Approach[J].IEEE Transactions on Information Theory,2014,60(10):6303-6328.
  • 6郭中华,史浩山.基于欧氏最小生成树的无线Ad Hoc网络容量研究[J].传感技术学报,2008,21(10):1750-1754. 被引量:3
  • 7胡晗,朱洪波,朱琦.无线Ad hoc网络传输容量的性能分析[J].电子与信息学报,2012,34(6):1457-1462. 被引量:5
  • 8Rezagah R E,Mohammadi A.Analyzing the Capacity of Wireless Ad Hoc Networks[J].Telecommunication Systems,2014,55(1):159-167.
  • 9Grossglauser M,Tse D N C.Mobility Increases the Capacity of Ad-Hoc Wireless Networks[J].IEEE Transaction on Networking,2002,3:1577-1586.
  • 10Jae Young Seol,Seong Lyun Kim.Node Mobility and Capacity in Wireless Controllable Ad hoc Networks[J].Computer Communi- cations,2012,35(11):1345-1354.

二级参考文献48

  • 1李辉,张安,徐琦,吉世栋.多径衰落信道中的一种新的多用户检测算法[J].传感技术学报,2006,19(1):238-240. 被引量:1
  • 2刘永强,严伟,代亚非.一种无线网络路径容量分析模型[J].软件学报,2006,17(4):854-859. 被引量:6
  • 3戴沁芸,胡修林,张蕴玉,于宏毅.基于图形理论的Ad Hoc网络容量研究[J].电讯技术,2006,46(2):73-77. 被引量:1
  • 4于宁,万江文,吴银锋.无线传感器网络定位算法研究[J].传感技术学报,2007,20(1):187-192. 被引量:51
  • 5Baccelli F, Tchoumatchenko K, Zuyev S. Markov Paths on the Poisson-Delaunay Graph with Applications to Routing in Mobile Networks[J].Adv. AppI. Probab. 32 (1)(2000)1-18.
  • 6Bertsimas D, Van Ryzin G. An Asymptotic Determination of the Minimum Spanning Tree and Minimum Matching Constants in Geometrical Probability[J].Oper. Res. Lett. 9 (1990) 223-231.
  • 7Steele M. Growth Rates of Euclidean Minimal Spanning Trees with Power Weighted Edges[J].Ann. Prob. 16(4) (1988) 1767-1787.
  • 8Gupta P, Kumar P R. The Capacity of Wireless Networks[J].IEEE Transactions of Information Theory, 2000, 46(2):338- 404.
  • 9Dousse O, Thiran P. Connectivity vs Capacity in Dense Ad Hoc Networks[C]//Proc, of IEEE Infocom 2004,476-486.
  • 10Toumpis S,Goldsmith A. Large Wireless Networks Under Fading, Mobility, and Delay Constranits[C]// Proc, of IEEE Infocom 2004,609 619.

共引文献28

同被引文献18

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部