期刊文献+

针对能耗和服务质量的虚拟机整合方法

A Dynamic Consolidation of Virtual Machines Method for Energy and Service Quality
下载PDF
导出
摘要 针对云计算数据中心能耗、服务质量问题,设计了一种虚拟机动态整合方法。该方法主要创新为基于利用率差值的虚拟机选择算法及基于能效比的虚拟机重分配算法。仿真实验结果表明该方法与传统方法相比降低了能耗和服务等级协议违背率,算法具备有效性。 For the energy consumption and service quality problem in cloud computing,a dynamic consolidation of virtual machines method is proposed.The innovation of the method includes virtual machine select algorithm based on utilization difference and virtual machine reallocation algorithm based on the performance/power.The experimental results show that the proposed method can effectively reduce energy and SLA violation compared with the traditional method.
作者 赵君 马中
出处 《计算机与数字工程》 2016年第3期405-408,共4页 Computer & Digital Engineering
关键词 云计算 动态整合 利用率差值 cloud computing dynamic consolidation utilization difference
  • 相关文献

参考文献11

  • 1Nathuji R, Schwan K. VirtualPower: CoordlinatedPower Management in Virtualized Enterprise Systems [C]//Proceedings of International Symposium on Op- erating System Principles (SOSP, 2007 : 265-278.
  • 2Kusic D, Kephart J O, Hanson J E, et al. Power and Performance Management of Virtualized Computing Environments Via Lookahead Control[J]. Internation- al Conference on Autonomic Computing, 2008, 12( 1): 3-12.
  • 3Srikantaiah S, Kansal A, Zhao F. Energy aware con- solidation for cloud computing[C]//Proceedings of the 2008 conference on Power aware computing and sys tems USENIX Association, 2008 : 10-10.
  • 4Cardosa M, Korupolu M R, Singh A. Shares and utili- ties based power consolidation in virtualized server en vironments [C]//Integrated Network Management, 2009. IM'09. IFIP/IEEE International Symposium on IEEE, 2009 : 327-334.
  • 5Jung G, Joshi K R, Hiltunen M A, et al. Generating Adaptation Policies for Multi-tier Applications in Con solidated Server Environments[C]//Autonomic Corn puting, 2008. ICAC'08. International Conference on IEEE, 2008 : 23-32.
  • 6Jung G, Joshi K R, Hiltunen M A, et al. A Cost Sen- sitive Adaptation Engine for Server Consolidation of Multitier Applications [C]//Proceedings of the 10th ACM/IFIP/USENIX International Conference on Mid dleware Springer-Verlag New York, Inc. , 2009:163 183.
  • 7Berral J L, et al. Towards energy-aware scheduling in data centers using machine learning[C]//Proc, of the 1st International Conference on Energy-Efficient Corn puting and Networking,2010.
  • 8Beloglazov A, Buyya R. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtu- al Machines in Cloud Data Centers[J]. Concurrency Computation Practice I~ Experience, 2012, 24 ( 13 ) : 1397-1420.
  • 9Corporation S P E. SPECpower_ssj2008 Benchmarks [EB/OL]. http://www, spec. org/power_ssj2008/in- dex. html, 2008.
  • 10Calheiros R N, Ranjan R, Beloglazov A, et al. Cloud Sim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software practice ~ Ex- perience, 2011,41 ( 1 ) : 23-50.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部