期刊文献+

基于RBF神经网络的机器人平滑圆弧轨迹规划 被引量:2

Trajectory Planning of Robotic Smooth Arc Based on RBF Neural Network
下载PDF
导出
摘要 针对一般圆弧插补算法收敛性和稳定性差,逼近效果不理想的问题,提出基于RBF神经网络的圆弧轨迹规划方式。论文从运动学角度出发,分析求解工业四轴机器人运动学正逆问题,建立其D-H数学模型和空间三维模型。通过圆弧轨迹经过的空间三点,求出空间圆弧的参数方程;在Matlab软件中,仿真RBF神经网络规划的圆弧轨迹曲线,结果表明RBF神经网络所规划轨迹平滑稳定,收敛速度快,逼近误差小,从而证明RBF神经网络对机器人轨迹规划的可行性与必要性。 To solve problem that the convergence and stability of the arc interpolation algorithm is not ideal,this paper proposes a circular trajectory planning method based on RBF neural network.From the point of view of kinematics,the normal inverse kinematics problem of four axis robot is analyzed,and the mathematical model of D-H and 3D model is established.Through the space 3points of circular arc track,the parameter equation of space circular arc is obtained.In the Matlab software,emulating the trajectory of the circular interpolation algorithm based in RBF neural network planning,the results show that the trajectory planning of RBF neural network is smooth and stable,the convergence speed is fast and the approximation error is small.So the feasibility and necessity of RBF neural network for robot trajectory planning are proved.
出处 《计算机与数字工程》 2016年第3期409-413,424,共6页 Computer & Digital Engineering
关键词 机器人 轨迹规划 圆弧 RBF神经网络 robot trajectory planning arc RBF neural network
  • 相关文献

参考文献8

二级参考文献19

  • 1胡鹏,方康玲,刘晓玉.基于PMAC的开放式机器人控制系统[J].微计算机信息,2006(04Z):171-173. 被引量:39
  • 2张红强,章兢,王耀南,刘健辰,徐磊.机器人关节空间B样条轨迹设计的混沌优化[J].电机与控制学报,2007,11(2):174-177. 被引量:10
  • 3LIAN G, SUN Z Q, MU C D. Optimal motion planning passing through kinematic singularities for robot arms[ C ]//IROS 2006.Beijing: IEEE Press, 2006:4349 -4351.
  • 4GARG D P, KUMAR M. Optimization techniques applied to multiple manipulators for path planning and torque minimization [ J ]. Engineering Applications of Artificial Intelligence, 2002, 15 (3 - 4): 241-252.
  • 5CAO B, DODDS G I, IRWIN G W. Constrained time-efficient and smooth cubic spline trajectory generation for industrial robots [J]. IEE Proceedings-Control Theory and Applications, 1997, 144(5) : 467 -475.
  • 6HIROAKI O, KEN H, MAKOTO I, et al. Improvement of trajectory tracking for industrial robot arms by learning control with B- spline[ C]//ISATP 2003. Piscataway: IEEE, 2003 : 264 -269.
  • 7LEE M. Evolution of behaviors in autonomous robot rising artificial neural network and genetic algorithm [ J]. Information Sciences, 2003, 155(2),43-60.
  • 8王洪涛,刘志远,裴润.基于Adams的6自由度机器人仿真系统研究[C].2003年全国系统仿真学术年会论文集,北京:中国系统仿真学会,2003:467-473.
  • 9R.Castain and Paul R.P. An online dynamic trajectory generator. International Journal of robotics Research,3.
  • 10J.Craig. Introduction to Robotics-Mechanics And Control (Third edition). Pearson Prentice Hall,2005.

共引文献67

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部