期刊文献+

广义Black-Scholes方程数值方法分析 被引量:1

A Numerical Analysis Method for the Generalized Black-Scholes Equation
下载PDF
导出
摘要 Black-Scholes方程作为描述期权定价最有效的方程之一,其求解问题一直是人们关注的焦点。自20世纪70年代以来,涌现出了大量求解这一偏微分方程的方法。Abraham J.Arenas等人就利用非标准的有限差分格式求解出了广义Black-Scholes方程,在此基础上,利用精确的线性差分格式和空间导数的近似,得到了广义Black-Scholes方程的近似解。同时,又将该方法推广到了求解非齐次的Black-Scholes方程的数值解问题,并得到与广义Black-Scholes方程类似的近似解。 Black- Scholes equation is one of the most effective equation describing option pricing, and the solving problem is always the focus of people's attention.Since the 1970 s, emerged a large number of methods for solving the differential equation of flops. Abraham J.Arenas and others have used nonstandard finite difference scheme to solve the generalized Black- Scholes equation. On this basis, we use the precision linear difference format and spatial derivative approximation to get the approximate solution of the generalized Black- Scholes equation. At the same time, this method has been generalized to find the numerical solution of the nonhomogeneous Black- Scholes equation, and we get the approximate solution which is similar to that of the generalized Black- Scholes equation.
作者 丁会敏
出处 《六盘水师范学院学报》 2016年第1期10-13,共4页 Journal of Liupanshui Normal University
基金 贵州省科学技术基金项目(黔科合LH字[2014]7467号)
关键词 BLACK-SCHOLES方程 有限差分 数值解 近似解 Black-Scholes equation finite difference numerical solution the approximate solutions
  • 相关文献

参考文献6

  • 1丁会敏,何传江,殷涛.Adomian分解下非齐次Black-Scholes方程的算子级数解[J].云南大学学报(自然科学版),2013,35(6):738-743. 被引量:2
  • 2Abraham J.Arenas,Gilberto Gonzalez-Parra,Blas Melendez Caraballo.2011,A nonstandard finite difference scheme for a nonlin- ear Black-Scholes equation[J].Mathematical and Computer Modelling,57(2013): 1663 - 1670.
  • 3Black.F, Scholes.M.. 1973. The Pricing of options and Corprate liabilities [J] .Journal Politics Economy, 81(1973) :637-659.
  • 4F. John. 1991. Partial Differential Equations, Springer-Verlag, New York. H. Liu, J. Yong.2005,Option pricing with an i11iquid underlying asset market [J]. Econ. Dyn. Control, 29 (2005):2125 - 2156.
  • 5Martain Bohner, Yao Zheng.2009,On analytical solutions of the Black-Scholes equation [J].Applied Mathematics Letters,22 (2009):309-313.
  • 6R. Company, L. J6dar, E. Ponsoda, C. Ballester.2010,Numerical analysis and simulation of option pricing problems modeling illiquid markets[J]. Comput. Math.Appl, 59 (8):2964 - 2975.

二级参考文献10

  • 1JODAR L,SEVILLA - PERIS P,CORTES J C,et al. A new direct method for solving the Black - Scholes equation[ J]. Appl Math Lett,2005,18 ( 1 ) : 29 - 32.
  • 2BOHNER M,ZHENG Y. On analytical solutions of the Black- Scholes equation[ J]. Appl Math Letts,2009,19(22) :309- 313.
  • 3ADOMAIN G. A review of the decomposition method in applied mathematics [ J]. Math Anal Appl, 1988,135 (2) :501- 544.
  • 4LESNIC D. The decomposition method for linear, one - dimensional, time - dependent, partial differential Equations [ J ]. Int Math Math Sci,2006,Art. ID 42389,1- 29.
  • 5ABBAOUI K, CHERRUAULT Y. Convergence of Adomian' s method applied to differential equations [ J]. Comput Math Appl, 1994,28(5) :103- 109.
  • 6BLACK F, SCHOLES M S. The pricing of options and corporate liabilities [ J ]. Political Econ, 1973,81:637- 654.
  • 7MAVOUNGOU T, CHERRUAULT Y. Numerical study of fisher' s equation by adomian' s method [ J ]. Math Comput Model- ling, 1994,19( 1 ) :89- 95.
  • 8BASTO T, SEMIAO V, CANLHEIROS F L. Numerical study of modified adomian' s method applied to burgers equation [ J ]. Comput Appl Math,2007,206:927- 949.
  • 9EL - WAKIL S A, ABDOU M A, ELHANBALY A. Adomian decomposition method for solving the diffusion - convection - reaction equations[ J]. Appl Math Comput,2006,177:729- 736.
  • 10关莉,李耀堂.修正的Black-Scholes期权定价模型[J].云南大学学报(自然科学版),2001,23(2):84-86. 被引量:11

共引文献1

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部