期刊文献+

基于荧光碳点的免疫荧光探针构建及其对大肠杆菌的特异性识别 被引量:5

Immunofluorescence probe based on fluorescent carbon dots and its application to the special recognition of Escherichia coli
原文传递
导出
摘要 目的将碳点(CDs)应用在免疫荧光探针成为取代传统荧光染料的新型标记物。方法通过微波加热方法制备高强荧光碳点,并通过EDC偶联法与大肠杆菌抗体结合形成复合免疫荧光探针,以大肠杆菌O157∶H7为检测模型进行特异性识别实验。结果碳点成功应用在免疫标记大肠杆菌O157∶H7,并可见多色荧光。结论免疫荧光探针成功地识别大肠杆菌O157∶H7,表明碳点可作为免疫荧光探针的荧光标记物,有望制成具有自主知识产权的新型低毒生物传感器。 Objective Carbon dots( CDs) are an emerging carbon nano-material which is environmentally-friendly,economical,efficient and stable. Their fluorescence properties can match the semiconductor quantum dot. Moreover,CDs have more excellent biocompatibilities. The purpose of this experiment is to apply CDs to the fluorescent immune probe to make them a new label,which can replace the traditional fluorescent dyes. Methods Using microwave heating method,the high strength fluorescent carbon dots were prepared. Wtih the EDC coupling method,the high strength fluorescent carbon dots could bond with Escherichia coli antibodies to form a complex immune fluorescent probe. Specific recognition experiments were carried out in the model of E. coli O157∶ H7. Results CDs were successfully applied to immune recognition of E. coli O157∶ H7 and multicolor fluorescence was observed. Conclusion CDs can serve as a label of the fluorescent immune probe,and are expected to become a new type of low toxicity biosensor with independent intellectual property rights.
出处 《军事医学》 CAS CSCD 北大核心 2016年第3期202-206,共5页 Military Medical Sciences
基金 国家自然科学基金(51303210) 天津市自然科学基金(14JCYBJC29500) 天津市科技支撑计划重点项目(14ZCZDSY00009)
关键词 荧光抗体技术 免疫荧光探针 碳点 特异性 大肠杆菌O157∶H7 纳米结构 fluorescent antibody technique immunofluorescent probes carbon dots specificity Escherichia coli O157∶ H7 nanostructures
  • 相关文献

参考文献16

  • 1Dong W, Dong Y, Wang Y, et al. Labeling of human hepatocel- lular carcinoma cells by hexamethylene diamine modified fluores- cent carbon dots [ J ]. Spectroehim Aeta A Mol Biomol Spectrosc, 2013,116:209 - 213.
  • 2Wang Y, Hu R, Lin G, et al. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity [ J ]. ACS Appl Mater Interfaces, 2013,5 ( 8 ) :2786 - 2799.
  • 3Zhou XC, O'Shea SJ, Li SFY. Amplified mierogravimetric gene sensor using Au nanoparticle modified oligonucleotides [ J ]. Chem Commun, 2000,11 : 953 - 954.
  • 4Wang M, Hou W, Mi CC, et al. Immunoassay of goat antihuman immunoglobulin G antibody based on 1 ergy transfer between near-infrared responsive NaYF4: Yb, Er up- conversion fluorescent nanoparticles and gold nanoparticles [ J ]. Anal Chem, 2009, 81 (21) : 8783 - 8789.
  • 5Liu CJ, Zhang P, Tian F, et al. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging [ J ]. J Mater Chem, 2011,21 (35) : 13163 - 13167.
  • 6Li Q, Ohulchanskyy TY, Liu R, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro [J]. J Phys Chem C, 2010, 114(28) : 12062 -12068.
  • 7Mohapatra S, Sahu S, Sinha N, et al. Synthesis of a carbon-dot- based photoluminescent probe for selective and ultrasensitive de- tection of Hg2+ in water and living cells [J]. Analyst, 2015, 140(4) : 1221 - 1228.
  • 8张筱喆,张文君,张祖星,肖长河,王万华,潘乐,沈玉华.掺氮高荧光碳点的一步法制备及对痕量Hg(Ⅱ)离子的选择性检测[J].无机化学学报,2015,31(1):1-6. 被引量:17
  • 9He H, Wang X, Feng Z, et al. Rapid microwave-assisted syn- thesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging[ J]. J Mater Chem B, 2015, 24(3) :4786 -4789.
  • 10De B, Volt B, Karak N. Carbon dot reduced Cu20 nanohybrid/ hyperbranched epoxy nanocomposite : mechanical, thermal and photocatalytic activity[ J ]. RSC Adv, 2014, 4 (102) : 58453 - 58459.

二级参考文献21

  • 1Baker S. N., Baker G. A., Angew. Chem. Int. Ed., 2010, 49(38), 6726-6744.
  • 2Xiu Y., Zhou Y., Gao Q., Chen J. S., Li G. D., Chem. Res. Chinese Universities, 2013, 29(1), 189-192.
  • 3Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc., 2006, 128(24), 7756-7757.
  • 4Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C. H. A., Yang X., Lee S. T., Angew. Chem. Int. Ed., 2010, 49(26), 4430-4434.
  • 5Nawaz F., Wang L., Zhu L. F., Meng X. J., Xiao F. S., Chem. Res. Chinese Universities, 2013, 29(3), 401-403.
  • 6Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953-3957.
  • 7Wang J., Wang C. F., Chen S., Angew. Chem. Int. Ed., 2012, 51(37), 9297-9301.
  • 8Long Y. M., Zhou C. H., Zhang Z. L., Tian Z. Q., Bao L., Lin Y., Pang D. W., J. Mater. Chem., 2012, 22(13), 5917-5920.
  • 9Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., Adv. Funct. Mater., 2012, 22(22), 4732-4740.
  • 10Dong Y., Pang H., Yang H. B., Guo C., Shao J., Chi Y., Li C. M., Yu T., Angew. Chem. Int. Ed., 2013, 52(30), 7800-7804.

共引文献23

同被引文献17

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部