期刊文献+

基于信号极化三维平稳性的飞行器姿态估计 被引量:2

Aircraft Attitude/Heading Estimation Based on 3D Statistical Characteristics of Polarization Electric(Magnetic) Stable Signal
下载PDF
导出
摘要 以电磁波为参照的飞行器姿态测量研究,可弥补空间参照物缺乏,丰富姿态测量手段。利用3个正交电(磁)场传感器接收电磁波三维电(磁)信号,测量运动平台姿态。该方法根据姿态参数估计的CRB(克拉美—罗界)是否为有限值,判断该环境电磁波信号能否用于运动平台姿态测量;根据基准姿态与实时姿态互相关矩阵变化,估计得到实时天线坐标系到基准天线坐标系的转换矩阵,据此将实时姿态坐标系下的运动平台姿态,转换到基准姿态坐标系下,再转换到地理坐标系下,完成运动平台姿态感知。电磁波信号可以为独立或相干信号,波达方向和极化状态任意,可不受多径效应困扰。仿真试验表明该方法稳定有效。 The attitude measurement based on electromagnetic wave can make up for the lack of spatial reference,and enrich the method of attitude measurement. In this paper, moving platform attitude is measured from the electromagnetic waves received by the three orthogonal dipole electric (magnetic) antennas.The CRB (Cramer Rao Bound) of the parameters estimation will determine whether the environmental electromagnetic wave signal can be used to measure moving platform Attitude/Heading.The transformation matrix, from the real-time antenna coordinates to the reference antenna coordinates, is obtained by comparing their correlation matrixes.We convert the platform attitude of the real-time antenna coordinates, into the reference antenna coordinates, then into the geographical coordinates. And the platform attitude is percept.The electromagnetic wave signals can be independent or coherent signal,and the attitude/heading estimation is not affected by muhipath effect.Simulation experiment shows that the method is stable and effective.
出处 《无线电工程》 2016年第4期30-34,51,共6页 Radio Engineering
关键词 电磁矢量传感器 极化状态 波达方向 姿态导航 EM Vector Sensor state of polarization DOA( wave direction of arrival) attitude determination
  • 相关文献

参考文献16

  • 1CI-IAO A, KANG Y S.Ahitude Integration of Radar Ahim- eter and GPS/INS for Automatic Takeoff and Landing of a UAV [ C ] // KINTEX, Gyeonggi-do, Korea . 1 lth Interna- tional Conference on Control, Automation and Systems, 2011 : 1 429-1 432.
  • 2HANS L,WANG J L. Quantization and Colored Noises Error Modeling for Inertial Sensors for GPS/INS Integration [ J ]. IEEE SENSORS JOURNAL, 2011, 11 (6) : 1 493-1 503.
  • 3Xiaoliang Wang Xiaowei Shao Deren Gong Dengping Duan.GPS/VISNAV integrated relative navigation and attitude determination system for ultra-close spacecraft formation flying[J].Journal of Systems Engineering and Electronics,2011,22(2):283-291. 被引量:5
  • 4GABRIELE G, PETER J G, TIM P G. Instantaneous Global Navigation Satellite System ( GNSS )-Based. Attitude Determination for Maritime Applications [ J ].Oce- anic Engineering, IEEE,2012,12 (99) : 1-15.
  • 5KIS L, LANTOS B.Aided Carrier Phase Differential GPS for Attitude Determination[C]//ASME, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2011:778-783.
  • 6ANDREW R, ABDELHAMID T. On the Attitude Estimation of Accelerating Rigid-bodies Using GPS and IMU Measurements [ C ] //Orlando, FL, USA, 2011 50th IEEE Conference on Decision and Control,European Con- trol Conference (CDC-ECC),2011:8 088-8 093.
  • 7吴美平,逯亮清.北斗双星系统车辆定向技术[J].国防科技大学学报,2006,28(3):89-93. 被引量:6
  • 8AXELRAD P,WARD L M.Spacecraft Attitude Estimation Using the Global Positioning System:Methodology andResult for RADCAL[ J] .Journal of Guidance ,and Dynam- ics,1996,19(6) :1 201-1 209.
  • 9NAQVI N A, Li Y J.The Quest for Optimal Spacecraft At- titude Determination Filtering Algorithm Using GNSS Phase Measurements : An Overview [ C ] //Japan, 2nd In- ternational Conference on Signal Processing Systems (IC- SPS) ,2010,V2:383-388.
  • 10NEHORAI A, PALDI E. Vector-sensor Array Processing for Electromagnetic Source Location [ J ]. IEEE Transactions on Signal Processing, 1994(42) :376-398.

二级参考文献38

  • 1J. L. Crassidis, E L. Markley. Predictive filter for nonlinear sys tern. Journal of Guidance, Control, and Dynamics, 1997, 20(3) 566-572.
  • 2J. Kouba. A guide to using international GPS service (1GS) products, http://igscb.jpl.nasa.gov/components/prods.html.
  • 3D. Sun, J. L. Crassidis. Observability analysis of six-degree- of-freedom configuration determination using vector observa- tions. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1149-1157.
  • 4G. K. Purcell, D. Lichten, S. C. Wu, et al. Autonomous forma- tion flyer (AFF) sensor technology development. AAS Guidance and Control Conference, 1998, AAS 98-062.
  • 5A. Moccia, S. Vetrella. A tethered interferometric synthetic aperture radar (SAR) for a topographic mission. 1EEE Trans. on Geoscience and Remote Sensing, 1992, 30(1): 103-109.
  • 6T. Weismuller, M. Leinz. GN&C technology demonstrated by the orbital express automomous rendezvous and captrue sensor system. Proc. of 29th Annual AAS Guidance and Control Con- ference, 2006.
  • 7J. E How, M. Tillerson. Analysis of the impact of sensor noise on formation flying control. Proc. of the American Control Con- ference, 2001: 3986-3991.
  • 8M. Tillerson. Coordination and control of multiple spacecraft using convex optimization techniques. Department of Aero- nautics and Astronautics, Massachusetts Institue of Technology, 2002.
  • 9Overview of the DART mishap investigation results. NASA Pub- lic Release, 2006.
  • 10T. Corazzini, A. Robertson, J. C. Adams, et al. GPS sensing for spacecraft formation flying. Proc. oflON-GPS Conference, 1997.

共引文献9

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部