期刊文献+

G蛋白偶联受体计算研究的进展和前瞻 被引量:2

Progresses and prospects of computational study on G protein-coupled receptors
下载PDF
导出
摘要 G蛋白偶联受体(G protein-coupled receptor,GPCR)是含有七个跨膜螺旋的一类重要蛋白,是迄今为止发现的最大的多药物靶标受体超蛋白家族。例如,目前上市药物中有超过30%是以GPCR为靶点的。然而,与GPCR重要性形成强烈反差的是科学界对于其结构与功能的了解非常贫乏,主要原因是通过实验手段来获得GPCR的结构与功能信息极其困难。利用生物信息学方法从基因组规模的数据中识别GPCR并预测三维结构是可行途径之一。基于生物信息学的GPCR研究将为新型药物靶标的筛选和药物的开发提供一定的帮助。本文论述了几种较为典型的GPCR计算方法,并基于已有研究提出可能的创新性研究策略来解决GPCR蛋白识别、跨膜区定位、以及结构和功能预测等问题。 G protein coupled receptors( GPCR),a general designation of a large class of membrane proteins,contain seven transmembrane helices in its three-dimensional structure,which currently are the drug targets more than 30% in the market. In contrast to the importance of GPCR,the knowledge of scientific community to understand its structure and function is very limited. The main reason is the difficulty to obtain the structure and function of GPCR information by wet experiment. Now,it is feasible to use bioinformatics methods to identify and predict the 3D structure of GPCR.Research on GPCR based on bioinformatics is beneficial to novel drug targets screening and new drugs developing.This paper discusses some typical bioinformatics methods. In addition,several possible new research strategies are presented to address the identification of GPCR proteins from a genome scale database,position its transmembrane region and predict the three-dimensional structure of GPCR and drug ligand binding mode.
出处 《生物信息学》 2016年第1期31-38,共8页 Chinese Journal of Bioinformatics
基金 国家自然科学基金青年项目(N0.31500673) 福建省教育厅科技项目(N0.JA14049) 福州大学人才基金项目(N0.XRC-1336)
关键词 G蛋白偶联受体 GPCR识别 蛋白结构预测 跨膜区预测 药物配体 G protein-coupled receptors GPCR recognition Protein structure prediction Transmembrane region prediction Drug ligand
  • 相关文献

参考文献43

  • 1NGLESEJ, KOCH W J, CARON M G,et al. Isoprenylationin regulation of signal transduction by G-protein-coupled re-ceptor kinases[ J]. Nature, 1992,359(6391) :147-150.
  • 2ZHANGK,ZHANG J, GAO Z G,et al. Structure of the hu-man P2Y12 receptor in complex with an antithrombotic drug[J]. Nature, 2014,509(7498):115-118.
  • 3赵强,吴镭,李佳,吴蓓丽,谢欣,姜威,孟庆峰,董尔丹.重大疾病导向的G蛋白偶联受体研究[J].中国基础科学,2015,17(3):3-8. 被引量:3
  • 4KRATOCHWILN A, GATTI-MCARTHUR S, HOENER MC,et al. G protein-coupled receptor transmembrane bindingpockets and their applications in GPCR research and drugdiscovery : a survey [J]. Current Topics in Medicinal Chem-istry, 2011,11(15):1902-1924.
  • 5XIAOX, MIN J L, WANG P,et al. iCDI-PseFpt: identifythe channel-drug interaction in cellular networking withPseAAC and molecular fingerprints[ J]. Journal of Theoreti-cal Biology, 2013,337:71-79.
  • 6KIM S, MALINVERNI J C, SLIZ P,et al. Structure andfunction of an essential component of the outer membraneprotein assembly machine[ J]. Science, 2007,317(5840):961-964.
  • 7PIERCE K L, PREMONT R T, LEFKOWITZ R J. Seven-transmembrane receptors [ J ]. Nature Reviews Molecular CellBiology, 2002,3(9) :639-650.
  • 8VASSILATISD K,HOHMANN J G, ZENG H,et al. The Gprotein - coupled receptor repertoires of human and mouse[J ]. Proceedings of the National Academy of Sciences,2003,100(8);4903-4908.
  • 9李静,谢欣.靶向G蛋白偶联受体的高通量药物筛选方法[J].国际药学研究杂志,2012,39(5):353-357. 被引量:7
  • 10BERMANH M,BHAT T N,BOURNE PE,et al. The Pro-tein Data Bank and the challenge of structural genomics[ J].Nature Structural Biology, 2000,7 Suppl:957-959.

二级参考文献40

  • 1Kontoyianni M, Liu Z. Structure-Based design in the GPCR target space. Current Medicinal Chemistry, 2012, 19 (4): 544-556.
  • 2Kratochwil N A, Gatti McArthur S, Hoener M C, et al. G protein coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: A surve. Current Topics in Medicinal Chemistry, 2011, 11 (15) : 1902-1924.
  • 3Beuming T, Sherman W. Current assessment of docking into GPCR crystal structures and homology models Successes, challenges, and guidelines. Journal of Chemical Information and Modeling, 2012, 52(12): 3263 -3277.
  • 4Wu H, Lt Q, Yang L Y, et al. CoREF.- A combined refine- ment approach for GPCRs backbone flexibility. Biomedical Engineering Applications, Basis and Communications, to appear.
  • 5Wu Hong-Jie, La Qiang, Wu Jin-Zheng, et al. A parallel ant colonies approach to de novo prediction of protein backbone in CASPS/9. Science China Information Sciences, 2012, 42(8): 1034 -1048.
  • 6Li Q, Xia X, Chen R, et al. When the lowest energy does not induce native structures: Parallel minimization of multi energy values by hybridizing searching intelligences. PLoS One, 2012, 7(9): e44967, doi: 10.1371/journal. pone. 004496.
  • 7Goldfeld D A, Zhu K, Beuming T, et a]. Success{u] predie tion of the intra and extracellular loops o{ {our G-protein coupled receptors. Proceedings of the National Academy o{ Sciences o{ the United States o{ America, 2011, 108(20): 8275 8280.
  • 8Zhang Y, DeVries M E, Skolnick J. Structure modeling of all identified G proteimcoupled receptors in the human genome. PLOS Computational Biology, 2006, 2(2): 88-99.
  • 9Yarov-Yarovoy V, Schonbrun J, Baker D. Multipass mem brane protein structure prediction using Rosetta. Proteins, 2006, 62(4): 1010 1025.
  • 10Barth P, Schonbrun J, Baker D. Toward high-resolution prediction and design of transmembrane helical protein struc tures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15682- 15687.

共引文献9

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部