期刊文献+

硬质合金表面化学镀镍工艺的研究 被引量:2

Research on the Technology of Electroless Nickel Plating on Cemented Carbide Surface
原文传递
导出
摘要 本文以硫酸镍(Ni SO4·6H2O)为主盐、次亚磷酸钠(Na H2PO2·H2O)为还原剂,通过改变络合剂的种类与含量对硬质合金表面进行化学镀镍。用扫描电镜及能谱、X射线衍射仪、涂层附着力自动划痕仪和电化学测试系统分析表征硬质合金镀镍前后的形貌、成分、相组成、结合力以及耐蚀性。结果表明,在p H=8,T=80℃的施镀条件下,镀层为非晶结构且耐蚀性较镀前有一定的提高,镀层表面主要含有Ni元素和P元素,其中Ni元素占了很大的比例,镀层物相组成为Ni P2和Ni,且膜基结合力在100 MPa以上,镀层厚度受络合剂的影响较大。镀液成分为Ni SO4·6H2O∶25 g/L、Na H2PO2·H2O∶30 g/L、柠檬酸钠(Na3C6H5O7·2H2O)∶45 g/L、氯化铵(NH4Cl)∶30 g/L、硫脲(H2NCSNH2)∶1 mg/L时得到的镀层性能最佳。 In this paper, the technology of electroless nickel plating on cemented carbide surface was studied by using nickel sulfate main salt and sodium hypophosphite as reducing agent, and by changing the kinds and contents of complexing agent. The composition, morphology, coating adhesion and the corrosion resistance of cemented carbide before and after electroless nickel plating were analysized by SEM, XRD and coating adhesion automatic scratch tester as well as electrochemical testing system. The results show that, under the plating condition of p H=8 and T=80 ℃, the coating is of amorphous structure and the corrosion resistance is improved. The coating surface mainly contains Ni and P elements, and the Ni element accounts for a large proportion. The phase composition of the coating is Ni P2 and Ni, and the binding force between the coating and the substrate is above 100 MPa. The coating thickness is greatly influenced by the complexing agent. The coating obtains the best performance with the plating solution composition of sulfate nickel [NiSO4according to6H2O](25 g/L), sodium hypophosphite [Na H2PO2 according to 2H2O](30 g/L), citric acid, sodium [Na3C6H5O7according to2H2O](45 g/L), ammonium chloride [NH4Cl](30 g/L) and thiourea [H2NCSH2](1 mg/L).
出处 《硬质合金》 CAS 2016年第1期24-32,共9页 Cemented Carbides
基金 西安市科技攻关项目(CXY1430-8)
关键词 硬质合金 化学镀镍 表面处理 cemented carbide electroless nickel plating surface treatment
  • 相关文献

参考文献13

二级参考文献39

  • 1冯钟潮,张炳春,赵岩,王亚庆.激光低温沉积金刚石膜[J].材料研究学报,1996,10(5):521-524. 被引量:4
  • 2张庆.刀具材料的应用和发展[J].热处理,2006,21(4):8-11. 被引量:6
  • 3于金伟.纳米陶瓷刀具材料的力学性能研究[J].煤矿机械,2007,28(5):48-49. 被引量:3
  • 4杨国伟 毛友德.非金刚石基底生长金刚石薄膜过渡层存在机理研究[J].高压物理学报,1995,9(1):74-80.
  • 5[1]D.F.Carroll, Processing and Properties of Ultrafine WC/Co Hard Materials. Translation Selections of the 14th International Plansee Semilar'97(in China), Cenmented Carbide Editoal Department,1998, P79-86.
  • 6[2]Y.Yamamoto,A.Matsumoto, Y. Doi. Ultrafine Tungsten Carbide Made by Direct Carburization Process and Properties of Cemented Carbide. Translation Selection of the 14th International Plansee Semilar'97, Cemented Carbide Editoal Department, 1998, P117-123.
  • 7[4]Larry E. McCandlish, Bernard H. Kear, Byoung-Kee,Kim, "Carbothermic Reaction Process for Making Nanophase WC-Co Powder", US Patent No.5230729.
  • 8[5]Z. Fang and J. W. Eason, "Study of Nanostructured WC-Co Composites", Proc. 13th Int. Plansee Seminar, Vol. 3, Eds. H. Bildstein and R. Eck, Plansee AG, Reutte, 1993, p625.
  • 9[6]W.D. Shubert, A. Bock and B. Lux,"General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production", Int. J. Refract. Met. &Hard Mat., Vol.13,1995,P281-296.
  • 10邹序枚,硬质合金,1996年,1期,6页

共引文献95

同被引文献49

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部