期刊文献+

某些DNA方程的求解 被引量:1

Solutions of some DNA Equations
原文传递
导出
摘要 设纽结方程N(O)=K_0,N(O+R)=K_1,其中O是有理缠绕或者是两个有理缠绕的和,R是整缠绕,并且O和R都是未知的缠绕,N是缠绕的分子的构造,K_i(i=0,1)是已知的纽结或链环.给出了当K_0,K_1其中一个是b(1,0)或者是b(0,1)情形的缠绕方程的解.从而给出了DNA重组后的数学模型. Consider the following mathematical model: N(O) = K0, N(O+R) = K1, where O is a rational tangle or the sum of two rational tangles, and R is a rational tangle, in addition, O and R are unknown tangles, N is the numerator construction of the tangle, and Ki (i = 0, 1) are the known knots or links. Give the solutions of these tangle equations that one of K0, K1is b(1, 0) or b(0, 1). Furthermore, one can obtain the DNA recombination model.
出处 《生物数学学报》 2016年第1期93-100,共8页 Journal of Biomathematics
基金 国家自然科学基金资助项目(项目编号:11471151)
关键词 纽结方程 缠绕 DNA模型 Knot equations Tangle DNA model
  • 相关文献

参考文献12

  • 1Ernst C, Summers D W. A calculus for rational tangles: applications to DNA recombination[J]. Mathematics Proceedings Cambridge Philosophical Society, 1990, 108(3):489-515.
  • 2Ernst C, Sumners D W. Solving tangles equations arising in a DNA recombination model[J]. Mathematics Proceedings Cambridge Philosophical Society, 1999, 126(1):23-36.
  • 3Sumners D W. Untangling DNA[J]. Mathematics, Intelligencer, 1994, 12(3):71-80.
  • 4Sumners D W, Ernst C, Cozzarelli N R, et al. Spengler.Mathematical analysis of the mechanisms of DNA recombination using tangles[J]. Quarter Review o] Biophys, 1995, 28(2):253-313.
  • 5韩友发,单亚男,张倩.缠绕方程和DNA模型[J].数学年刊(A辑),2013,34(5):609-620. 被引量:2
  • 6Lickorish W B R. Prime knots and tangles[J]. Transactions American Mathematical[J]. Society, 1981, 267(2):321-332.
  • 7Ernst C, Sumners D W. The growth of the number of prime knots[J]. Mathematics Proceedings Cambridge Philosophical Society, 1987, 102(2):303-315.
  • 8Darcy I K. Biological distances on DNA knots and links:applications to Xer recombination. Knots in Hellas'98. J.Knot Theory Ramifications, 2001, 10(2):269-294.
  • 9Ernst C. Tangle equations[J]. Journal of Knot theory and its ramifications, 1996, 5(1):145--159.
  • 10Goldman J R, Kauffman L H. Rational tangles[J]. Advance in Applications Mathematics. 1997, 18(2):300 332.

二级参考文献22

  • 1Kauffman L H, Lambropoulou S. From tangle fraction to DNA [M]. Topology in Mole- cular Biology, Berlin, Heidelberg: Springer-Verlag, 2004: 69-110.
  • 2Ernst C, Sumners D W. A calculus for rational tangles: Applications to DNA recom- bination [J]. Math Proc Camb Phil Soc, 1990, 108:489-515.
  • 3Ernst C, Sumners D W. Solving tangles equations arising in a DNA recombination model [J]. Math Proc Cambridge Philos Soc, 1999, 126:23-36.
  • 4Sumners D W. Untangling DNA [J]. Math Intelligeneer, 1990, 12:71-80.
  • 5Cerf C. A note on the tangle model for DNA Recombination [J]. Bulletin of Mathemat- ical Biology, 1998, 60:67-78.
  • 6Conway J H. An enumeration of knots and links and some of their algebraic properties [C]. New York: Pergamon Press, 1970:329-358.
  • 7Lickorish W B R. Prime knots and tangles [J]. Trans Amer Math Soc, 1981, 267:321- 332.
  • 8Higa R. Tangle sum of alternating tangles yielding a trivial knot [J]. Kobe University, 2009, 1:1-13.
  • 9Zhang W P. DNA modelling through tangles [R]. Offprint, 1997.
  • 10Adams C C. An elementary introduction to the mathematical theory of knots [M]. Providence, RI: Amer Math Soc, 2004.

共引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部