期刊文献+

具非线性发病率随机SIQS传染病模型的渐近行为 被引量:5

The Asymptotic Behavior of a Stochastic SIQS Epidemic Model with Nonlinear Incidence
原文传递
导出
摘要 研究了一类具有非线性发病率的随机SIQS传染病模型,通过构造适当的Lyapunov函数并结合遍历论的相关结论,探讨该模型的解在其平衡点附近的动力学行为.研究结果表明:当R_0≤1时,随机模型的解会沿着无病平衡点(A/d,0,0)附近振动;当R_0>1时,该模型在地方病平衡点附近存在遍历的不变分布. A general stochastic SIQS epidemic model with nonlinear incidence is investigated in this paper. By means of constructing appropriate Lyapunov functions and ergodicity theory, the asymptotically dynamical behaviors of a stochastic model around the positive equilibrium are considered. Our results show that if R0 ≤1, the solutions of the stochastic model fluctuate along the (A/d,0,0) and if R0≥1. the stochastic model admits an invariant distribution which is ergordic.
出处 《生物数学学报》 2016年第1期109-117,共9页 Journal of Biomathematics
基金 国家自然科学基金(11201075) 福建省自然科学基金(2010J01005)共同资助
关键词 非线性发病率 SIQS 随机扰动 遍历性 Nonlinear incidence SIQS Stochastic perturbations Ergodic property
  • 相关文献

参考文献12

  • 1Hyman J, Li J. The differential infectivity and staged progression models for the transmission of HIV[J]. Mathematical Biosciences, 1999, 155(2):77-109.
  • 2Jiang D Q, Ji C Y, Shi N Z, Yu J J. The long time behavior of DI SIR epidemic model with stochasitc perturbation[J]. Journal of Mathematical Analysis and Applications, 2010, 372(1):162-180.
  • 3Liu H, Yang Q S, Jiang D Q. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences[J]. Automa$ica, 2012, 48(5):820-825.
  • 4Ji C Y, Jiang D Q, Yang Q S, Shi N Z. Dynamics of a multigroup SIR epidemic model with stochastic perturbation[J]. Automatica, 2012, 48(1):121-131.
  • 5Lahrouz A, Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with nonlinear incidence[J]. Statistics and Probability Letters, 2013, 83(4):960-968.
  • 6Gray A, Greenhalgh D, Hu L, Mao X, Pan J. A stochastic differential equation SIS epidemic model[J]. SIAM Journal on Applied Mathematics, 2011, 71(3):876-902.
  • 7Hu G X, Liu M, Wang K. The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations[J]. Applied Mathematics and Computation, 2012, 218(21):10520-10532.
  • 8孟琳琳,原三领.一类随机SIR流行病模型的渐近行为研究[J].生物数学学报,2013,28(1):47-52. 被引量:6
  • 9Hethcote H, Ma Z E, Liao S B. Effects of quaxantine in six endemic models for infectious diseases[J]. Mathematical Biosciences, 2002, 180(1-2):141-160.
  • 10Gard T C. Introduction to Stochastic Dierential Equations[M]. USA: Marcel Dekker Inc, 1988.

二级参考文献7

  • 1Kermack W O, McKendrick A G. McKendrick A G.Contributions to the mathematical theory of epidemics[J]. Proc. R. Soc, 1927, A115:700-721.
  • 2Anderson R M, May R M. Population biology of infectious diseases [J]. Nature, 1979, 280(5721):361-367.
  • 3Jiang D Q, Shi N Z. The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. JMath Anal Appl, 2005, 303(1):164-172.
  • 4Yu J J, Jiang D Q, Shi N Z. Global stability of two-group SIR model with random perturbation[J]. J MathAnal Appl, 2009, 360(1):235-224.
  • 5Jiang D Q, Yu J J, Ji C Y, Shi N Z. Asymptotic behavior of global positive solution to a stochastic SIRmodel [J]. Math. Comput Modeling, 2011,54(1-2):221-232.
  • 6李宽国,刘广菊,陶松涛,丁光涛,方立铭.研究SIR传染病数学模型的Lagrange-Noether方法[J].生物数学学报,2011,26(3):435-440. 被引量:2
  • 7叶志勇,豆中丽,马文文,周锋.具有种群Logistic增长的SIR模型的稳定性和Hopf分支[J].生物数学学报,2012,27(2):233-240. 被引量:2

共引文献5

同被引文献12

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部