期刊文献+

国防工程震害风险的脆性贝叶斯网络评估模型 被引量:2

Brittleness Bayesian Network Assessment Model for Defense Engineering Earthquake-damage Risk
下载PDF
导出
摘要 地震对国防工程造成严重威胁,其风险体系复杂脆性的演化经常导致系统崩溃,且存在因素关联解释模糊与推理计算的局限性。为此,针对风险体系的演化判别和推理计算问题,建立一种基于复杂脆性和贝叶斯网络的国防工程震害风险评估方法。通过辨析地震作用下国防工程风险复杂体系的脆性环境和结构特征,得到其脆性结构要素为贝叶斯网络模型的节点变量,确定网络结构和参数,实现震害风险体系不确定逻辑关系知识和多风险状态的隐式表达,构建基于复杂脆性的国防工程震害风险贝叶斯网络评估模型及组件,并应用于地震作用下国防工程风险分析系统软件。案例结果表明,该方法所获得的脆性风险报告包含各级风险的概率量值以及总体风险概率,具有较强的科学性与实用性。 Under the serious threat of earthquke to defense engineering, the evolution in the brittleness of the complex risk system often leads to system crash, and the complex risk system has the limitations in the fuzzy characters association explaination and reasoning computing operations. Therefore, according to the evolution discrimination and reasoning computation problem in the risk system,a new earthquake-damage risk assessment method is proposed for defense engineering on the basis of complex brittleness and Bayesian Network (BN). Through discriminating the brittleness environment and structure characteristics of the earthquake-induced complex risk system for defense engineering, the brittleness structure elements are designed as the node variables of BN model, and the network structure and parameters are determined, which achieves the implicit expression of the uncertain logic association knowledge and multi risk status for the earthquake-damage risk system. Finally,the earthquake-damage risk BN assessment model and components are established for defense engineering based on complex brittleness,and are applied into the risk analysis system software about earthquake-damage defense engineering. Case results show that the brittleness risk report obtained with this method includes the probability of all risk levels and that of overall risk,and has high scientific and practical value.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第4期14-19,共6页 Computer Engineering
基金 国家自然科学基金资助项目(51308541) 江苏省自然科学基金资助项目(BK20130066)
关键词 风险评估 国防工程 复杂系统 脆性 贝叶斯网络 risk assessment defense engineering complex system brittleness Bayesian Network ( BN )
  • 相关文献

参考文献11

二级参考文献107

共引文献207

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部