期刊文献+

活性元素氧对AA-TIG焊熔池传输行为影响的数值模拟 被引量:5

Numerical simulation of the effects of oxygen as active element on weld transportation behavior in arc assisted activating TIG welding
下载PDF
导出
摘要 电弧辅助活性TIG焊(arc assisted activating TIG welding,AA-TIG焊),采用辅助电弧以Ar+O2作为保护气体预熔待焊母材表面以形成氧化层,再进行常规TIG焊,可使熔深明显增加.文中结合AA-TIG焊熔池氧元素分布的实验研究,提出焊接熔池表面氧元素的两种不均匀分布模式,考虑浮力、电磁力和表面张力,建立了更完善的电弧辅助活性TIG焊熔池模型,模拟研究氧元素在熔池表面呈不均匀分布时,AA-TIG焊瞬态熔池中动量及能量的传输行为.假设熔池内部液态金属是湍流、不可压缩Newton流体,使用FLUENT RNG k-ε湍流模型进行处理.结果表明,当氧在熔池上表面呈非均匀分布,并且氧的不均匀分布模型为低氧模型时,熔池内部仍然以内对流流动为主. In arc assisted activating TIG welding process,the base metal is pre-melted by an assisting arc along with mixture of argon and oxygen to form an oxide layer. After TIG welding,the weld penetration can be increased significantly. In this paper,two modes of uneven oxygen distribution at the surface of weld pool is proposed based on the experimental measurements;buoyance. A more sophisticated model of the weld pool in AATIG welding is developed,taking Lorentz force and surface tension into account. This model is developed to calculate the transportation hehavior of mass,momentum and energy in AA-TIG weld pool with the uneven oxygen distribution. In this paper,surface tension is a function of the temprerature coefficent and the concentration coefficient of the surface tension. The fluid flow in the weld pool is assumed to be turbulence and incompressible Newtonian fluid. The model is based on the RNG k-ε turbulence model. The experiments show that the calculated results agree well with measured value.
出处 《焊接学报》 EI CAS CSCD 北大核心 2016年第3期62-66,131-132,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51205179) 甘肃省自然科学基金资助项目(1010RJZA037)
关键词 不均匀分布 AA—TIG焊 传输行为 数值模拟 uneven distribution oxygen AA-TIG welding transmission behavior numerical simulation
  • 相关文献

参考文献15

  • 1Gurevich S M, Zamkov V N, Kushmienko N A. Increase in the efficiency of penetration of titanium alloys in argon-arc welding [J]. Avtomaticheskaya Svarka. 1965(9) : 1 -4.
  • 2樊丁,林涛,黄勇,牛书锋.电弧辅助活性TIG焊接法[J].焊接学报,2008,29(12):1-4. 被引量:27
  • 3Heiple C R, Roper J R, Stagner R T, et al. Surface Active Ele- ment Effects on the Shape of GTA, Laser, and Electron Beam Welds[J]. Weld J, 1983, 62: 72.
  • 4Pollard B. The effect of minor elements on the welding character- istics of stainless steel[J]. Weld J, 1988, 67: 202.
  • 5Fujii H, Sato T, Lu S, Nogi K. Development of an advanced A- TIG (AA-TIG) welding method by control of Marangoni convec- tion[J]. Mater Sci Eng A, 2008, 495:296 -303.
  • 6Zhang R H, Fan D. Numerical simulation of effects of activating flux on flow patterns and weld penetration in A -TIG welding [J]. Sci Technol Weld Join, 2007, 12: 15.
  • 7董文超,陆善平,李殿中,李依依.微量活性组元氧对焊接熔池Marangoni对流和熔池形貌影响的数值模拟[J].金属学报,2008,44(2):249-256. 被引量:40
  • 8Marya M, Edwards G R. Chloride contributions in flux-assisted GTA welding of magnesium alloys[ J]. Weld J, 2002, 81 : 291.
  • 9Huang Y, Fan D, Shao F. Alternative current flux zoned tungsten inert gas welding process for aluminium alloys [ J 1. Sci Tehnot Weld Join, 2012, 17: 122.
  • 10Simonik A G. Effect of halides on penetration in argon2arc weld- ing of titanium alloys[ J]. Svarochnoye Proizvodstvo, 1974, 21 : 81.

二级参考文献35

  • 1赵玉珍,雷永平,史耀武.A-TIG焊中氧含量对熔池流动方式影响的数值模拟[J].金属学报,2004,40(10):1085-1092. 被引量:11
  • 2Howse D S, Lucas W. Investigation into arc constriction by active fluxes for tungsten inert gas welding [J]. Science and Technology of Welding and Joining, 2000, 5(3) : 18 - 193.
  • 3Marya M, Edwards G R. Chloride contributions in flux-assisted GTA welding of magnesium alloys [J]. Welding Research, 2002( 11 ) : 291 - 298.
  • 4Fujii H, Lu S P, Nogi K, et al. Welding pool convection under microgravity and effect of Marangoni convection on weld shape[ C ]// Proceedings of IFWT in aviation and space industries, Beijing: China Machine Press, 2004: 75 - 87.
  • 5Takamichi I,Roderick I L.液态金属的物理性能[M].北京:科学出版社,2006.
  • 6Heiple C R, Roper J R, Stanger R T, et al. Surface active element effects on the shape of GTA, laser and electron beam welds [J]. Welding Research Supplement, 1983, (3) : 72 - 77.
  • 7Modenesi P J, Apolinario E R, Pereira I M. J Mater Process Technol, 2000; 99:260
  • 8Fan D, Zhang R H, Gu Y F, Ushio M. Trans JWRI, 2001; 30:35
  • 9Gurevich S M, Zamkov V N. Avtomaticheskaya Svarka, 1966; 12:13
  • 10Lu S P, Fujii H, Sugiyama H, Tanaka M, Nogi K. ISIJ Int, 2003; 43:1590

共引文献63

同被引文献69

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部