期刊文献+

离岸混凝土氯离子扩散系数的人工神经网络模型

Prediction of chloride diffusion coefficients of offshore concrete structures using artificial neural networks
下载PDF
导出
摘要 为研究人工神经网络在离岸混凝土氯离子渗透中的应用,从已有文献中选用653组数据,建立网络结构为13-27-1的模型进行训练、预测。研究结果表明:人工神经网络能有效预测离岸混凝土中的氯离子扩散系数;水灰比,水泥、减水剂、外加剂(粉煤灰、矿渣、硅灰)、骨料的含量以及混凝土的抗压强度、养护机制、试验方法、暴露时间和暴露环境均会对氯离子扩散系数产生影响。 An increasing attention has been directed to applying the artificial neural network( ANN)method in civil engineering. This paper examines the possibility of artificial neural network( ANN) to predict the chloride diffusion coefficient of concrete. A total 653 available sets of data from 13 literatures was used for establishing the network model. The developed ANN model used as many as 13 input variables,including water / cement ratio; the dosage of cement,superplasticizer,fly ash,granulated blast furnace,silica fume,aggregate; compressive strength; curing mechanism; testing method;testing time and environment to achieve one output parameter,referred to as chloride diffusion coefficient. The research results show that ANN is feasible in predicting the chloride diffusion coefficient in offshore concrete structures and the selected input variables are all correlated parameters.
出处 《河北工程大学学报(自然科学版)》 CAS 2016年第1期5-10,共6页 Journal of Hebei University of Engineering:Natural Science Edition
基金 国家自然科学基金资助项目(51378303 51508324) 上海市"浦江人才计划"(13PJ1405200 15PJ1403800) 教育部博士点新教师基金资助项目(20130073120074) 上海市教委创新重点项目(14ZZ027)
关键词 离岸混凝土 氯离子 扩散系数 人工神经网络 offshore concrete structures chloride diffusion coefficient artificial neural networks
  • 相关文献

参考文献25

  • 1JONES M R, DHIR R K, GILL J P. Concrete surface treat- ment: effect of exposure temperature on chloride diffusion resistance[J]. Cement and Concrete Research, 1995, 25 (1) : 197 -208.
  • 2LIU Q F, LILY, EASTERBROOK D, et al. Multi - phase modeling of ionic transport in concrete when subjected to an externally applied electric field [ J ]. Engineering Struc- tures, 2012(42): 201-213.
  • 3AL - AMOUDI OSB, AL - KUTTI WA, AHMAD S, et al. Correlation between compressive strength and certain dura- bility indices of plain and blended cement concretes [ J ]. Cement and Concrete Composites, 2009 (31) : 672 -676.
  • 4金伟良,薛文,陈驹.海岸及近海混凝土材料耐久性设计指标的影响参数分析[J].建筑结构学报,2011,32(12):86-97. 被引量:29
  • 5PALA M,OZBAY E, OZTAS A, et al. Appraisal of long - term effects of fly ash and silica fume on compressive strength of concrete by neural network [ J ]. Construction and Building Materials, 2007 (21 ) : 384 - 394.
  • 6SARIDEMIR M. Prediction of compressive strength of con- crete containing metakaolin and silica fume by artificial neural networks [ J ]. Advances in Engineering Software, 2009(40) :350 - 355.
  • 7KHAN MI. Mix proportions for HPC incorporating multi - ce- mentitious composites using artificial neural networks [ J ]. Construction and Building Materials ,2012 (28) : 14 - 20.
  • 8ALIZADEH R, GHODS P, CHINI M, et al. Effect of curing conditions on the service life design of RC structures in the Persian Gulf Region [ J ]. Journal of Materials in Civil Engineering, 2008 ( 20 ) : 2 - 8.
  • 9左江波.基于人工神经网络的粉煤灰混凝土氯离子扩散系数预测[D].衡阳:南华大学,2012.
  • 10李红辉.大掺量粉煤灰高性能混凝土研究[D].北京:北京建筑工程学院,2007.

二级参考文献50

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部