期刊文献+

A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations

A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations
原文传递
导出
摘要 Recently,it has been generally claimed that a low order post-Newtonian(PN)Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN)Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.
作者 陈荣超 伍歆
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第3期321-328,共8页 理论物理通讯(英文版)
基金 Supported by the the Natural Science Foundation of Jiangxi Province under Grant No.[2015]75 the National Natural Science Foundation of China under Grant Nos.11173012,11178002,and 11533004
关键词 post-Newtonian approximation Lagrangian and Hamiltonian mechanics circular restricted threebody problem CHAOS 欧拉-拉格朗日方程 等效哈密顿量 拉格朗日公式 牛顿方法 等价性 Hamilton 限制性三体问题 注记
  • 相关文献

参考文献32

  • 1T. Damour, P. Jaranowski, and G. Schfer, Phys. Rev. D 63 (2001) 044021; 66 (2002) 029901.
  • 2V.C. de Andrade, L. Blanchet, and G. Faye, Classical Quantum Gravity 18 (2001) 753.
  • 3M. Levi and J. Steinhoff, J. Cosmol. Astropart. Phys. 12 (2014) 003.
  • 4J. Levin, Phys. Rev. D 67 (2003) 044013.
  • 5C. K6nigsd6rffer and A. Gopakumar, Phys. Rev. D 71 (2005) 024039.
  • 6A. Gopakumar and C. K6nigsd6rffer, Phys. Rev. D 72 (2005) 121501(R).
  • 7J. Levin, Phys. Rev. D 74 (2006) 124027.
  • 8X. Wu, L. Mei, G. Huang, and S. Liu, Phys. Rev. D 91 (2015) 024042.
  • 9H. Wang and G.Q. Huang, Commun. Theor. Phys. 64 (2015) 159.
  • 10X. Wu and G. ttuang, Mon. Not. R. Astron. Soc. 452 (2015) 3167.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部