期刊文献+

On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
原文传递
导出
摘要 In the paper,we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly.By the approach the various loop algebras of the Lie algebra A_1are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained,respectively.A reduction of the later hierarchy is just right the famous Ablowitz-Ladik hierarchy.Finally,via two different enlarging Lie algebras of the Lie algebra A_1,we derive two resulting differential-difference integrable couplings of the Toda hierarchy,of course,they are all various discrete expanding integrable models of the Toda hierarchy.When the introduced spectral matrices are higher degrees,the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第3期335-340,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11371361 the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology(2014) Hong Kong Research Grant Council under Grant No.HKBU202512 the Natural Science Foundation of Shandong Province under Grant No.ZR2013AL016
关键词 discrte integrable system Lie algebra integrable coupling 可积系统 代数方程 换向器 离散 代数和 扩展可积模型 Maple 循环代数
  • 相关文献

参考文献20

  • 1M.J. Ablowitz and J.F. Ladik, J. Math. Phys. 16 (1975) 598.
  • 2I. Merola, O. Ragnisco, and G.Z. Tu, Inverse Problems 10 (1994) 1315.
  • 3G.Z. Tu, J. Phys. A 23 (1990) 3903.
  • 4M. Bruschi, O. Ragnisco, P.M. Sanitini, and G.Z. Tu, Physica D 40 (1991) 273.
  • 5H.W. Zhang, G.Z. Tu, W. Oevel, and B. Fuchssteiner, J. Math. Phys. 32 (1991) 1908.
  • 6C.W. Cao, X.G. Geng, and Y.T. Wu, J. Phys. A 32 (1999) 8059.
  • 7C.W. Cao and X.X. Xu, Commun. Theor. Phys. 58 (2012) 469.
  • 8C.W. Cao and X. Yang, J. Phys. A 41 (2008) 025203 (19pp).
  • 9X.G. Geng, H.H. Dai, and J.Y. Zhu, Stud. Appl. Math. 118 (2007) 281.
  • 10X.G. Geng, J. Math. Phys. 44 (2003) 4573.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部