期刊文献+

Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation

Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation
原文传递
导出
摘要 The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第3期341-346,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos.11305106,11275129 and 11405110 the Natural Science Foundation of Zhejiang Province of China under Grant No.LQ13A050001
关键词 potential Kadomtsev-Petviashvili equation nonlocal symmetry front wave consistent tanh expansion method 局域对称性 KP方程 Backlund变换 非局部 函数展开法 对称变换 辅助变量 相互作用
  • 相关文献

参考文献40

  • 1C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095.
  • 2R. Hirota, The Direct Method in Soliton Theory, Cam- bridge University Press, Cambridge (2004).
  • 3P.J. Olver, Application of Lie Group to Differential Equa- tion, Springer-Verlag, Berlin (1986).
  • 4G.W. Bluman and S.C. Anco, Symmetry and Integration Methods for Dif- ferential Equations, Springer-Verlag, New York (2002).
  • 5V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).
  • 6J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24 (1983) 522.
  • 7C. Rogers and W.K. Schief, Biicklund and Darboux Trans- formations Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, Cam- bridge University Press, Cambridge (2002).
  • 8X.Y. Tang, S.Y. Lou, and Y. Zhang, Phys. Rev. E 66 (2002) 046601.
  • 9X. Lii, Commun. Nonlinear Sci. Numer. Simulat. 19 (2014) 3969.
  • 10W.M. Moslem, S. Ali, P.K. Shukla, and X.Y. Tang, Phys. Plasmas 14 (2007) 082308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部