摘要
设G(V,E)是一个图,f为G的一个k-邻点可区别I全染色,若f满足||Vi∪Ei|-|Vj∪Ej||≤1(i≠j),其中,Vi∪Ei={v|f(v)=i}∪{e|f(e)=i},则称f为G的一个k-均匀邻点可区别I-全染色.给出风车图K3~t,图D(m,4)和齿轮图珟W的均匀邻点可区别I-全染色,同时,通过两边夹逼的方法得到了它们的均匀邻点可区别Ⅰ-全色数的确定值.
Let G( V,E) be a simple connect graph G,if f be a k-incidence-adjacent vertex-distinguishing total coloring of G. If f satisfy | | Vi∪Ei|-| Vj∪Ej| | ≤1( i≠j),where,Vi∪Ei= { v | f( v) =i} ∪{ e | f( e) = i},then f is called an equitable incidence adjacent vertex-distinguishing total coloring of G.In this paper,the equitable incidence adjacent vertex-distinguishing total coloring chromatic number of graph Kt3 and graph D(m,4) and gear wheel W is given.
出处
《哈尔滨师范大学自然科学学报》
CAS
2016年第1期37-40,共4页
Natural Science Journal of Harbin Normal University
关键词
邻点可区别Ⅰ-全染色
均匀邻点可区别Ⅰ-全染色
均匀邻点可区别Ⅰ-全色数
Incidence adjacent vertex distinguishing total coloring
Equitable incidence adjacent vertex distinguishing total coloring
Equitable incidence adjacent vertex distinguishing total coloring chromatic