期刊文献+

Voigt位型下穿孔金属/反铁磁结构光透射非倒易性研究

The Nonreciprocal of Light Transmission with Perforated Metal / antiferromagnetic Structure in Voigt Geometry
下载PDF
导出
摘要 在穿孔金属/反铁磁(PMA)结构,利用线性传递矩阵方法研究结构Voigt位型下光透射非倒易性.发现外加静磁场和穿孔金属孔几何尺寸对结构的透射光谱产生影响,出现了光透射非倒易性现象.光透射非倒易性频率区域在反铁磁共振区,此区间正处于太赫兹(THz)波段,随着入射角度的增加,透射非倒易性的效果越明显,研究穿孔金属/反铁磁结构的光透射非倒易性可为反铁磁器件的设计加工提供理论基础. The nonreciprocal of light transmission with perforated metal / antiferromagnetic( AF)structure( PMA) in Voigt geometry is calculated. The calculations are performed with a linear transfer matrix method and examples of nonreciprocal of light transmission are given. In particular,the nonreciprocal of light transmission in PMA is studied when the direction of an applied magnetic field and Perforated metal hole geometry size. The nonreciprocal of light transmission can be relized in a resonance zone of AF,including terahertz( THz) frequency range. The increasing of the angle of incidence wave can enhance the effect of nonreciprocal of light transmission,AF may be of interest in signal processing in the THz.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2016年第1期67-71,共5页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金(11204056 11104050 11304068) 黑龙江省教育科学技术研究项目(12521154) 哈尔滨师范大学研究生创新基金(HSDSSCX2015-21)
关键词 穿孔金属 反铁磁 非倒易性 Voigt位型 Antiferromagnetic Perforated metal Nonreciprocal Voigt geometry
  • 相关文献

参考文献19

  • 1Sherwin M, Schmuttenmaer C, Bucksbaum P. Opportunities in THz Science: Report of a DOE - NSF - NIH Workshop. Arlington, VA ,2004.
  • 2Lee M, Wanke M C. Searching for a solid - state terahertz technology. Science. 2007,316:64 - 65.
  • 3Stead R A, Mills A K, Jones D J. Method for high resolution and wideband spectroscopy in the terahertz and far - infrared region. J Opt Soc Am B,2012,29:2861 -2868.
  • 4O' Hara J F, Withayachumnankul W+ AI - Naib I, et al. A Review on Thin - fihn Sensing with Teraherlz Waves. Tera- hertz Waves,2012,33 : 245 - 291.
  • 5Ouchi T, Kajiki K, Koizumi T, et al. Terahertz Imaging Sys- tem for Medical Applications and Related High Efficiency Ter- ahertz Devices. J Infrared Millim THz W, 2014,35:118 - 130.
  • 6Nakanishi H, Fujiwara S, Takayama K, et al. Imaging of a Polycstalline Silicon Solar Cell Using a Laser Terahertz E- mission Microscope. Appl Phys Express,2012(5) :112301.
  • 7Mare Gabay, Jean - Marc Triscone. Superconductors : Tera- hertz superconducting switch. Nature Photonics, 2011 ( 5 ) : 447.
  • 8Leonhard Preehtel, Li Song, Dieter Schuh, et al. Time- re- solved ultr, ffast photocurrents and terahertz generation in freely suspended graphene. Nature Communications, 2012 ( 3 ) : 646.
  • 9Alexander B, Khanikaev S, Hossein Mousavi, et al. One-Way Extraordinary Optical Transmission and Nonreciprocal Spoof Plasmons. Phys Rev Lett ,2010,105 : 126804( 1 -4).
  • 10Wang X Z. The Faraday effect of an antiferromagnetic photon- ic crystal with a defect layer. J Phys: Condens Matters, 2005 ( 17 ) :5447.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部