期刊文献+

基于SMA的风机塔架结构风致振动控制研究 被引量:11

Wind-induced Vibration Control of Wind Turbine Tower Structures Based on Shape Memory Alloys
下载PDF
导出
摘要 随着风力发电机塔架高度的增加及叶片尺寸的增大,风致振动对风机塔架结构可靠性的影响越来越显著。利用形状记忆合金(SMA)的超弹性效应,设计出一套针对风机塔架结构的耗能减振装置,以减小风机塔架结构的风致振动。构建了双线性SMA滞回模型,并集成到Abaqus软件中。以功率1.5 MW的大型风力发电机塔架为例,建立了SMA-风机塔架结构整体分析有限元模型,对其动力性能进行了研究,并做了风荷载响应及振动控制分析。结果表明,与无控状态时相比,装有SMA耗能装置的塔架顶层最大位移和加速度分别减小45%和31%,所提出的SMA耗能减振装置能够有效地控制塔架结构的动力响应。 Due to the increase of height and blade size of the wind turbine tower(WTT)structure,the wind-induced vibration responses of WTT structure have great impact on the reliability of the structures.In this paper,a set of energy dissipation device for the WTT structure is designed and analyzed by using the superelasticity effect of shape memory alloy(SMA).A bilinear hysteretic model for SMA superelasticity is proposed and integrated into Abaqus software for numerical analysis.Taking a large size wind turbine generator(WTG)of 1.5MW as an example,a finite element model(FEM)for numerical analysis of the SMA-WTT coupled structure is set up and the analyses for the dynamics performance,wind-induced responses and vibration control are performed.The numerical results show that the peak horizontal displacement and acceleration at the top of the tower equipped with the SMA energy dissipation device are reduced to 45% and31%,respectively,compared with its non-controlled status,and the proposed SMA energy dissipation device can effectively control the dynamic responses of WTT structures.
出处 《防灾减灾工程学报》 CSCD 北大核心 2016年第1期159-164,共6页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金面上项目(51278313 51308357)资助
关键词 形状记忆合金(SMA) 耗能减振装置 结构振动控制 风机塔架结构 Shape Memory Alloys(SMA) energy dissipation device structure vibration control wind turbine tower structure
  • 相关文献

参考文献11

  • 1胡传煜.发展风能大有可为[J].能源技术,2005,26(增1):145-147.
  • 2Piotr M, Jacek Z. Wind energy development in the world, Europe and Poland from 1995 to 2009: currentstatus and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2011, (15) : 2330-2341.
  • 3Zhao Z Y, Yan H, Zillante G. A critical review of fac- tors affecting the wind power generation industry in China[J]. Renewable and Sustainable Energy Re- views, 2013, (19) : 499-508.
  • 4Adachi Y, Unjoh S. Experimental study on seismic response control of bridge by damper devices using shape memory alloys I-C]/// Proceedubgs of the 2na World Conference on Structural Control. Kyoto, Ja- pan:Is, n. ], 1998=I861-1870.
  • 5Otani S, Hiraishi H, Misorikawa M, et al. Research and development of smart structural systems [C]/// Proceedings of the 12th World Conference on Earth- quake Engineering. Auckland:New Zealand Society for Earthquake Engineering, 2000.
  • 6Feng Z C, Li d Z. Dynamics of a mechanical system with a shape memory alloy bar [J]. Journal of Intelli- gent Materials and Structures, 1998, (7): 99-410.
  • 7Dolce M, Marnetto R. Passive seismic devices based on shape memory alloys[C]//Proceedings of the 12'h Word Conference on Earthquake Engineering. Auck- land: New Zealand Society for Earthquake Engineer- ing, 2000.
  • 8Mauro S, Domenico. Experimental study on seismic devices based on shape memory alloys[C]//Proceed- ings o{ the 12'h Word Conference on Earthquake Engi- neering. Auckland: New Zealand Society for Earth- quake Engineering, 2000.
  • 9Lin P H, Tobushi H, Tanaka K, et al. Deformation properties of TiNi shape memory alloys[J]. JSME In- ternational Journal A, 1996, 39(1): 108-116.
  • 10Davenport A G. The spectrum of horizontal gustiness near ground in high winds[J]. Quarterly Journal Royal Meteorological Society, 1961,87(372): 194-211.

同被引文献132

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部