期刊文献+

一步合成硫、氮共掺杂的碳量子点及其在Fe^(3+)检测中的应用 被引量:15

One-step Synthesis of Sulfur-and Nitrogen-co-doped Carbon Quantum Dots for Fe(Ⅲ) Detection
下载PDF
导出
摘要 碳量子点的光致发光性质不仅决定于尺寸还依赖于它的表面态,因此通过在碳量子点表面掺杂或嫁接不同元素与基团有望调节它的荧光发射行为。为了研究多种元素掺杂对碳量子点发光性质的影响,本文以对氨基苯磺酸为原料,通过水热法一步合成了氮、硫共掺杂的碳量子点。实验结果表明:制备的碳量子点尺寸分布均匀,氮、硫分别以氨基和磺酸基团的形式存在于碳量子点的表面。与已有的报道不同,碳量子点展现出了非激发波长依赖的蓝光发射行为,三价铁离子可有效猝灭其荧光,铁离子浓度在0~10-3mol·L-1范围内与碳量子点的荧光猝灭程度呈现良好的线性关系,检出限约为10-7mol·L-1。制备的碳量子点对三价铁离子具有高选择性、高灵敏性以及较好的抗干扰能力,能作为三价铁离子检测的传感器。 Not only do the photoluminescence( PL) properties of carbon quantum dots( CQDs) depend on their sizes,but also rely on their surface states. Accordingly,the PL behaviors of CQDs could be tuned by doping and / or grafting heteroatoms and groups. In this work,sulfur-and nitrogenco-doped carbon quantum dots( SN-CQDs) were firstly synthesized by one-step hydrothermal method using p-aminobenzenesulfonicacid as carbon source. Experimental results indicate that the obtained SN-CQDs have a uniform size and are modified by amine and sulphonic acid groups at their surface. Unlike previous reports,the SN-CQDs show the excitation-wavelength-independent photoluminescence behavior and their fluorescence can be quenched by Fe^3+ions. There is a good linear relationship between the Fe^3+concentrations within 0- 10- 3mol·L^- 1and the fluorescence quenching rates of SN-CQDs. The detecting limit for Fe^3+ions is about 10- 7mol·L^- 1. The obtained SNCQDs have the ability of high selectivity,high sensitivity and good anti-jamming capability to ferric iron ions. Accordingly,SN-CQDs can be used for the detection of Fe^3+ions in the environment and organism.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第4期410-415,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(51172214 51272301) 山西省优秀青年科学基金(2014021008)资助项目
关键词 碳量子点 三价铁离子 荧光猝灭 carbon quantum dots ferric iron ion fluorescence quenching
  • 相关文献

参考文献1

二级参考文献25

  • 1李顺来,董晓阳,许慧君.给体-受体体系分子内光致电子转移反应研究[J].物理化学学报,1997,13(8):680-684. 被引量:2
  • 2WangX. H., QuK. G., XuB. L., RenJ. S., QuX. G., NanoRes.,2011,4(9):908-920.
  • 3LiH. T., HeX. D., LiuY., HuangH., LianS. Y., LeeS. T., KangZ. H., Carbon, 2011, 49(2):605-609.
  • 4Hu S. L. , Liu J. , Yang J. L. , Wang Y. Z. , Cao S. R. , Journal of Nanoparticle Research, 2011, 13(12): 7247-7252.
  • 5Nawaz F. , Wang L. , Zhu L. F. , Meng X. J. , Xiao F. S. , Chem. Res. Chinese Universities, 2013, 29(3): 401-403.
  • 6Zheng X. , Wang F. , Liu C. Y. , Adv. Mater. , 2012, 24(13): 1716-1721.
  • 7Kong B. , Zhu A. , Ding C. Q. , Zhao X. M. , Li B. , Tian Y. , Adv. Mater. , 2012, 24(43) , 5844-5848.
  • 8Guo X. , Wang C. F. , Yu Z. Y. ,Chen L. , Chen S. , Chem. Commun. , 2012, 48(21): 2692-2694.
  • 9Sun Y. P. , Zhou B. , Lin Y. , Wang W. , Femando K. A. , Pathak P. , Meziani M. J. , Harruff B. A. , Wang H. , Luo P. G. , Yang H., KoseM. E., ChenB., VecaL. M., XieS. Y., J. Am. Chem. Soc.,2006, 128(24):7756-7757.
  • 10Idowu M. , Chen J. Y. , Nyokong T. , New J. Chem. , 2008, 32, 290-296.

共引文献5

同被引文献80

引证文献15

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部