期刊文献+

花生球蛋白和伴花生球蛋白在酸性条件下亚基结构的变化规律 被引量:4

Structural Variations in the Subunits of Arachin and Conarachin under Acidic Conditions
原文传递
导出
摘要 本文通过Zeta电位、内源荧光光谱、粒度、SDS-PAGE凝胶电泳及溶解性,探讨花生球蛋白和伴花生球蛋白在酸性条件下亚基结构的变化规律。电泳分析表明,花生球蛋白40.5、37.5、35.5和27 ku亚基在常温p H 2.0-3.0的条件下被酸解,产生32.86±0.10ku的新亚基,同时22和15 ku这两条亚基增多;当p H〈2.0时,花生球蛋白的亚基酸解受静电屏蔽抑制。当p H为1.0-3.0,伴花生球蛋白Ⅱ61 ku亚基被酸解产生36.95±0.50、25.14±1.86、18.98±0.78和17.37±1.17 ku这四个条带。进一步研究表明,花生球蛋白和伴花生球蛋白在酸性条件下结构伸展,粒径增大,在p H 2.0-3.0时的Zeta电位及溶解度较高。在p H 2.0-3.0内,花生球蛋白荧光扫描最大发射波长相对中性条件下发生红移,红移幅度大于伴球蛋白,说明伴球蛋白展开程度较球蛋白小。伴花生球蛋白的酸解及结构变化程度都小于球蛋白,说明伴花生球蛋白亚基对酸的敏感性低于球蛋白。 The structural variations in the subunits of arachin and conarachin under acidic conditions were investigated by zeta potential,intrinsic fluorescence spectroscopy,average hydrodynamic diameter analyses,sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE),and solubility.According to the electrophoretic analysis,the 40.5 ku,37.5 ku,35.5 ku,and 27 ku subunits of arachin were acid-hydrolyzed into a new 32.86 ± 0.10 ku band; while the levels of the 22 ku and 15 ku bands increased.When the p H was 2.0,the acid hydrolysis of arachin was totally inhibited by the electrostatic shielding that occurs at extreme p H.In the p H range of 1.0-3.0,the 61 ku subunit of conarachin was acid-hydrolyzed into 36.95 ± 0.50,25.14 ± 1.86,18.98 ± 0.78,and 17.37±1.17 ku bands.Further studies indicated that both arachin and conarachin unfolded under acidic conditions,and the particle size increased; when the p H values were in the range of 2.0-3.0,the zeta potential and solubility were relatively higher than that in other p H ranges.In the p H 2.0-3.0 range,the maximum emission wavelength in the fluorescence spectra of arachin was red-shifted as compared to that under neutral conditions; and the amplitude of this redshift was greater than that of conarachin,indicating that the degree of conarachin unfolding was lesser than that of arachin.In sum,the degrees of hydrolysis and structural changes of conarachin were lesser than those of arachin,indicating that conarachin is less acid-sensitive than arachin.
出处 《现代食品科技》 EI CAS 北大核心 2016年第3期30-35,55,共7页 Modern Food Science and Technology
基金 国家自然科学基金项目(31171783) 国家高技术研究发展计划(863计划)课题(2013AA102201)
关键词 花生球蛋白 伴花生球蛋白 酸解 SDS-PAGE ZETA电位 arachin conarachin acid hydrolysis sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) zeta potential
  • 相关文献

参考文献12

  • 1Chiou R Y Y. Effects of heat treatments on peanut arachinand conarachin [J]. Journal of Food Biochemistry. 1990,14(3): 219-232.
  • 2Neucere N J, Oiy R L,Carney W B. Effect of roasting on thestability of peanut proteins [Z]. 1969: 17,25-28.
  • 3Kella N K D. Heat-induced conformational changes inarachin at low pH: mechanism of gel formation [J]. FoodHydrocolloids. 1987,1(3): 181-190.
  • 4涂宗财,姜颖,陈钢,等.动态超高压微射流对花生球蛋白结构和功能性质的影响[Z].2009-03-75.
  • 5赵谋明,辛佩贤,赵强忠,陈楠楠,蔡孟森.酸性条件下花生分离蛋白亚基结构的变化规律[J].现代食品科技,2014,30(12):37-42. 被引量:11
  • 6Laetnmli U K. Cleavage of structural proteins during theassembly of the head of bacteriophage T4 [J]. Nature, 1970,227(5259): 680-685.
  • 7Catsimpoolas N, Campbell T G, Meyer E W.Association-dissociation phenomena in glycinin [J]. Archivesof biochemistry and biophysics. 1969,131(2): 577-586.
  • 8杨晓泉,陈中,赵谋民.花生蛋白的分离及部分性质研究[J].中国粮油学报,2001,16(5):25-28. 被引量:33
  • 9Peng I C, Dayton W R, Quass D W,et al. Studies on thesubunits involved in the interaction of soybean 11S proteinand myosin [J]. Journal of Food Science, 1982, 47(6): 1984-1990.
  • 10刘岩,赵冠里,苏新国.花生球蛋白和伴球蛋白的功能特性及构象研究[J].现代食品科技,2013,29(9):2095-2101. 被引量:13

二级参考文献27

  • 1曾卫国.花生蛋白溶解性和乳化性的研究[J].农产品加工(下),2005(1):16-18. 被引量:28
  • 2Chiou Y Y. Effects of heat treatment on peanut arachin and conarachin [J]. Journal of Food Biochemistry, 1990, 14: 219-232.
  • 3Govindaraju K, Srinivas H. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin [J]. LWT-Food Science and Technology, 2006, 39: 54-62.
  • 4Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227:680-685.
  • 5Meng G T, Ma C Y. Thermal properties of Phaseolus angularis (red bean) globulin. [J]. Food Chemistry, 2001, 23:453-460.
  • 6Ellman G D. Tissue sulflaydryl groups [J]. Arch. Biochem. Biophys, 1959, 82:70-72.
  • 7Thannhauser, T W, Konishi Y, & Scheraga H A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins [J]. Analytical Chemistry, 1984, 138, 181-188.
  • 8Petruccelli S, Afian M C. Partial reduction of soy protein isolate disulfide bonds. [J]. Journal of Agricultural and Food Chemistry, 1995, 43:2001-2006.
  • 9Petrucelli S, Anon M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structural and hydration properties [J]. Journal of Agricultral and Food Chemistry, 1994, 42: 2161-2169.
  • 10Wang J S, Zhao M M, Jiang Y M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45:410-414.

共引文献50

同被引文献42

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部