期刊文献+

融合框架中若干新的性质

Some New Properties of Fusion Frames
下载PDF
导出
摘要 框架与算子是密不可分的,将讨论有界算子在融合框架中的应用,并且得到了Hilbert空间中融合框架在算子作用下的一些新的性质,这些性质推广了融合框架在经典文献中的相关结论. Frame is closely connected with operator,this paper will discuss the bounded operator in the application of the fusion frames.We get new properties under the action of operator on the fusion frames in Hilbert spaces,and these properties generalize the classical relevant results in literatures.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期191-195,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11271001和61370147)
关键词 HILBERT空间 框架算子 融合框架 融合框架算子 Hilbert space frame operator fusion frame fusion frame operator
  • 相关文献

参考文献21

  • 1DUFFIN R J, SHAFER A C. A class of nonharmonic Fourier series[J]. Trans Am Math Soc,1952,72:341-366.
  • 2DAUBECHIES I. Ten lectures on wavelets[C]//CBMS 61. Philadelphia:SIAM,1992.
  • 3CASAZZA P G, KUTYNIOK G K. Frames of subspaces[C]//Contemp Math, 345. Providence:Am Math Soc,2004:87-113.
  • 4CASAZZA P G, KUTYNIOK G K, LI S. Fusion frames and distributed processing[J]. Appl Comput Harm Anal,2008,25(1):114-132.
  • 5MEYER Y. Wavelets and Operators[M]. Cambridge:Cambridge Univ Press,1992.
  • 6YOUNG R M. An Introduction to Nonharmonic Fourier Series[M]. New York:Academic Press,1980.
  • 7CHUI C K. An Introduction to Wavelets[M]. New York:Academic Press,1992.
  • 8CASAZZA P G. Custom building finite frames: wavelets, frames and operator theory[C]//Contemp Math, 345. Providence:Am Math Soc,2004:61-86.
  • 9CASAZZA P G, FICKUS M, MIXON D G, et al. Constructing tight fusion frames[J]. Appl Comput Harmon Anal,2011,30(2):175-187.
  • 10CASAZZA P G, KUTYNIOK G K. Robustness of fusion frames under erasures of subspaces and of local frame vectors[C]//Contemp Math, 464. Providence:Am Math Soc,2008:149-160.

二级参考文献19

  • 1Casazza P G. The art of frame theory[J]. Talwanese J of Math, 2000, 4(2) : 129 -201.
  • 2Christensen O. An introduction to frames and riesz bases[ M]. Boston: Birkhauser, 2003.
  • 3Casazza P G, Kutyniok G, Frames of subspaces[J]. Contemp Math, 2004, 345:87 -113.
  • 4Casazza P G, Kutyniok G, Li S. Fusion frames and distributed processing[J]. Appl Comput Harmon Anal, 2008, 25:114 - 132.
  • 5Gavruta P. On the duality of frames in Hilbert spaces[J]. J Math Anal Appl, 2007, 333:871 -879.
  • 6Taylor A E, Lay D C. Introduction to functional analysis[M]. New York: Wiley, 1980.
  • 7Yves Meyer. Wavelets and Operators. Cambridge: Cambridge Univ. Press, 1992.
  • 8Duffin R J, Shaffer A C. A Class of Nonharmonic Fourier Series. Trans. Amer. Math. Soc., 1952, 72:341-366.
  • 9Sz-Nagy B. Expansion Theorems of Paley-Wiener Type. Duke Math. J., 1947, 14:975-978.
  • 10Young R M. An Introduction to Nonhaxmonic Fourier Series. New York: Academic Press, 1980.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部