期刊文献+

一类感染细胞诱导未感染细胞凋亡的时滞微分方程病毒动力学模型稳定性的吸引域估计 被引量:1

Estimation of the Attractive Region of a Class of Delayed Virus Dynamics Model with Apoptosis of Uninfected T Cells by Infected T Cells
下载PDF
导出
摘要 基于文献(M.A.Nowak,C.R.M.Bangham.Science,1996,272:74-79.)提出的一类描述HIV-1病毒感染的微分方程动力学模型,在进一步考虑感染的CD4^+T细胞诱导未感染CD4^+T细胞凋亡等因素基础上,给出一类改进的时滞微分方程病毒动力学模型,研究病毒感染平衡点稳定性的吸引域估计问题,同时给出相应的计算机数值模拟. In this paper,based on the virus dynamical model of HIV-1 infection proposed by Nowak and Bangham(M.A.Nowak,C.R.M.Science,1996,272:74-79.) and the consideration of infected CD4-+ T cells inducing the apoptosis of uninfected CD4-+ T cells,we give an improved delay differential equations model for virus dynamics,and discuss the estimation of the attractive region of the infected equilibrium.Finally,we give also the corresponding computer numerical simulation.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期202-208,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11471034) 中央高校基本科研业务费专项资金(FRF-BY-14-036)
关键词 病毒动力学模型 时滞 稳定性 吸引域 virus dynamics model delay stability attractive region
  • 相关文献

参考文献25

  • 1NOWAK M A, MAY R M. Virus Dynamics: Mathematical Principles of Immunology and Virology[M]. Oxford:Oxford University Press,2000.
  • 2NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses[J]. Science,1996,272:74-79.
  • 3BONHOEFFER S, MAY R M, SHAW G M, et al. Virus dynamics and drug therapy[J]. Proceedings of National Academy of Sciences,1997,94:6971-6976.
  • 4GAO T, WANG W, LIU X. Mathematical analysis of an HIV model with impulsive antiretroviral drug doses[J]. Math Comput in Simulation,2011,82:653-665.
  • 5PANG H, WANG W, WANG K. Global properties of virus dynamics with CTL immune response[J]. J Southwest China Normal University:Natural Science,2005,30(5):796-799.
  • 6WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica,2007,D226:197-208.
  • 7HERZ A V M, BONHOEFFER S, ANDERSON R M, et al. Viral dynamics in vivo:limitations on estimates of intracellular delay and virus decay[J]. Proceedings of National Academy of Sciences,1996,93:7247-7251.
  • 8LI M Y, SHU H. Global dynamics of an in-host viral model with intracellular delay[J]. Bulletin of Mathematical Biology,2010,72:1492-1505.
  • 9ZHU H, ZOU X. Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay[J]. Discrete and Continuous Dynamical Systems,2009,B12:511-524.
  • 10PERELSON A S, NELSON P W. Mathematical analysis of HIV-1 dynamics in vivo[J]. SIAM Review,1999,41:3-44.

二级参考文献25

  • 1钟守铭,付英定.具有时滞的不确定离散系统的鲁棒稳定化[J].电子科技大学学报,1994,23(5):529-534. 被引量:8
  • 2黄玉梅,李树勇,潘杰.具有阶段结构的SIRS传染病模型[J].四川师范大学学报(自然科学版),2005,28(1):31-33. 被引量:10
  • 3唐国宁.KGW模型、流行病模型的重正化群方法研究[J].广西师范大学学报(自然科学版),1995,13(3):39-43. 被引量:2
  • 4郭淑利,江晓武.由两种不同病毒导致的SIR流行病模型分析[J].郑州大学学报(理学版),2006,38(2):5-8. 被引量:4
  • 5王开发,邓国宏,樊爱军.宿主体内病毒感染的群体动力学研究[C]//陆征一,周义仓.数学生物学进展.北京:科学出版社,2006:58-73.
  • 6Wang Kai-fa, Wang Wen-di. Propagation of HBV with spatial dependence [J]. Math Biosci ,2007,210:78-95.
  • 7Ebert D, Zsehokke-Rohringer C D, Carius H J. Dose eftecls and density-dependent regulation of two mieroparasites of Daphniamagma[J].Oeeologia ,2000,122:200-209.
  • 8McLean A R, Bostock C J. Scrapie infections initiated at valying doses:an analysis of 117 titration experiments[ J]. Phil Trans R Soc Lond B,2000,355:1043-1050.
  • 9Spouge J L, Shrager R I, Dimitrov D S. HIV-1 infection kinetics in tissue cultures[ J ]. Math Biosci, 1996,138 : 1-22.
  • 10Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load[J].J Virology, 1997,71: 3275-3278.

共引文献57

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部