期刊文献+

一类次线性双质子耦合格点系统的周期解 被引量:1

Periodic Solutions of a Class of Sub-linear Lattices Composed of Two Particles
下载PDF
导出
摘要 运用相平面分析的方法研究一类模拟2个质子相互作用的二阶带正权耦合方程的周期解问题.首先,通过使用一个变量代换将原系统转化为一个等价的非耦合系统.其次,通过对新系统中的二阶微分方程周期解的研究来了解原系统周期解的存在性和重性结果.在某种关于时间映射的次线性条件和关于周期外力的一个条件下,利用细致的相平面分析,构造了一系列适当大小的圆环,使得Poincare映射在这些圆环上具有扭转性.最后,通过应用:Poincare-Birkhoff扭转定理证明了系统周期解的存在性和无穷多个次调和解的存在性. In this paper,by the method of phase-plane analysis,we study the existence of the periodic solutions for a class of coupled equations that model the motion of two particles on the real line.First,we transform the equation to an equivalent uncoupled system by a coordinate transformation.Then,we study the existence and multiplicity of periodic solutions of original system by the same work on the new system.Under some sub-linear conditions about time-mapping,via the fine phase-plane analysis method,we construct a series of annulus on which the Poincare maps are twist.Finally by applying the Poincare-Birkhoff fixed point theorem we prove the existence of one harmonic solution and subharmonic solutions to the equations.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期236-241,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571249) 江苏省高等学校大学生创新训练项目基金(201410324001Z)
关键词 次线性 时间映射 格点系统 周期解 sub-linear time-mapping lattices periodic solutions
  • 相关文献

参考文献15

  • 1TORRES P J, ZANOLIN F. Periodic motion of a system of two or there charged particles[J]. J Math Anal Appl,2000,250(2):375-386.
  • 2TORRES P J. Periodic motions forced infinite lattices with nearest neighbor interaction[J]. Z Angew Math Phys, 2000,51(3):333-345.
  • 3TORRES P J. Necessary and sufficient conditions for existences of periodic motions of forced systems of particles[J]. Z Angew Math Phys,2001,52(3):535-540.
  • 4SUN J, MA S. Nontrivial periodic motions for resonant type asymptotically linear lattice dynamical systems[J]. J Math Anal Appl,2014,417(2):622-634.
  • 5DIBLíK J, FEC'KAN M, POSPíIL M. Forced Fermi-Pasta-Ulam lattice maps[J]. Miskolc Mathematical Notes,2013,1(1):63-78.
  • 6GENDELMAN O. Exact solutions for discrete breathers in a forced-damped chain.[J]. Phys Rev,2013,E87(6):062911.
  • 7LIU Z, GUO S, ZHANG Z. Existence of homoclinic travelling waves in infinite lattices[J]. Bull Malays Math Sci Soc,2013,36(4):965-983.
  • 8ZHOU S, HAN X. Pullback exponential attractors for non-autonomous lattice systems[J]. J Dyn Diff Eqns,2012,24(3):601-631.
  • 9WANG C, QIAN D. Periodic motions of a class of forced infinite lattices with nearest neighbor interaction[J]. J Math Anal Appl,2008,340(1): 44-52.
  • 10王少敏,杨存基.利用鞍点定理研究一类共振问题的周期解[J].四川师范大学学报(自然科学版),2013,36(4):545-548. 被引量:2

二级参考文献18

  • 1Wu X, Chert S X, Teng K M. On variational methods for a class of damped vibration problems[J]. Nonlinear Anal,2008,68: 1432 - 1441.
  • 2Rabinowitz P H. On subharmonic solutions of Hamihonian systems[J]. Commun Pure Appl Math, 1980,33:609 -633.
  • 3Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems [ NI ]. New York:Springer- Verlag, 1989.
  • 4Tang C L, Wu X P. Notes on periodic solutions of subquadratie second order systems[J]. J Math Anal Appl,2003 ,285 :8 - 16.
  • 5Tang C L, Wu X P. Periodic solutions for a class of non - autonomous subquadratic second order Hamiltonian systems [ J ]. J Math Anal Appl,2002 ,275 :870 - 882.
  • 6Tang C L. Periodic solutions for non - autonomous second order systems with sublinear nonlinearity [ J ]. Proc Am Math Soc, 1998,126:3263 - 3270.
  • 7Tang C L, Wu X P. Periodic solutions for second order systems with not uniformly coercive potential [ J]. J Math Anal Appl, 2001,259:386 - 397.
  • 8Tang C L, Wu X P. Periodic solutions of a class of non -autonomous second order systems [ J ]. J Math Anal Appl, 1999,236: 227 - 235.
  • 9裴瑞昌,李海合.一类二阶Hamihonian系统的无穷多周期解[J].纯粹数学与应用数学学报,2009,25(4):690-694.
  • 10Mawhin J, WiUem M. Critical point of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance [ J ]. Ann Inst H Poincare Anal Non- Lineaire, 1986,3:431 -453.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部