期刊文献+

双通道ELM在锂离子电池SOC估算的应用 被引量:4

A double channel ELM and its applications in SOC estimation of lithium-ion battery
下载PDF
导出
摘要 为提高电动汽车的锂离子电池组荷电状态的预测精度,采用理论分析与实验相结合的方法,对传统极限学习机进行改进,在输入层与输出层间搭建直接通道,提高模型精度.针对系统噪声的时变性,应用自适应无迹卡尔曼滤波器估算电池SOC.研究结果表明:双通道ELM具有更强的泛化能力和极短的训练时间,AUKF对于锂离子电池组系统噪声的时变特性具有更强的适应能力,显著降低了SOC估算结果的平均误差和最大误差. In order to improve state of charge prediction accuracy of lithium-ion battery pack, a method combined theoretical analysis and experimental research is adopted to reform the traditional extreme learning machine. Direct channels are built between the input layer and the output layer to improve battery model accuracy. For the system noise is time-varying, adaptive unscented Kalman filter is used for SOC prediction. The result shows that double channel ELM has strong generalization ability and extremely short training time, and AUKF is better adaptive for time-varying noise system. This improved method reduces the maximum error and mean error significantly.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第8期878-884,共7页 Journal of Liaoning Technical University (Natural Science)
关键词 荷电状态 锂离子电池 极限学习机 自适应无迹卡尔曼滤波 神经网络 state of charge lithium ion battery extreme learning machine adaptive unscented Kalman filter neural network
  • 相关文献

参考文献10

二级参考文献68

共引文献149

同被引文献15

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部