期刊文献+

Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts 被引量:1

Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts
原文传递
导出
摘要 A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h^-1, the 90% conversion of o-xylene has been obtained at around 200℃. The BET and SEM results indicated that Pd/MMS- b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability. A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h^-1, the 90% conversion of o-xylene has been obtained at around 200℃. The BET and SEM results indicated that Pd/MMS- b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.
出处 《Frontiers of Environmental Science & Engineering》 CSCD 2016年第3期458-466,共9页 环境科学与工程前沿(英文)
基金 This work was financially supported by the National Natural Science Foundation (Grant Nos. 21337003 and 21477149), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050200).
关键词 hierarchical macro-/mesoporous silica palladium VOCs catalytic oxidation hierarchical macro-/mesoporous, silica, palladium, VOCs catalytic oxidation
  • 相关文献

参考文献41

  • 1Huang Q, Xue X, Zhou R. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior. Journal of Hazardous Materials, 2010, 183(1–3): 694–700.
  • 2Schottler M, Hottenroth H, Schluter B, Schmidt M. Volatile organic compound abatement in semiconductor and solar cell fabrication with respect to resource depletion. Chemical Engineering & Technology, 2010, 33(4): 638–646.
  • 3Fang B, Kim J H, Kim M S, Yu J S. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Accounts of Chemical Research, 2013, 46(7): 1397–1406.
  • 4Yao J M, ZhanWC, Liu X H, Guo Y L,Wang Y Q, Guo Y, Lu G Z. Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microporous and Mesoporous Materials, 2012, 148(1): 131–136.
  • 5Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T. Toluene oxidation on titanium- and iron-modified MCM-41 materials. Journal of Hazardous Materials, 2009, 168(1): 226–232.
  • 6Zhao W, Cheng J, Wang L N, Chu J L, Qu J K, Liu Y H, Li S H, Zhang H, Wang J C, Hao Z P, Qi T. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS. Applied Catalysis B: Environmental, 2012, 127: 246–254.
  • 7Tsoncheva T, Issa G, Nieto J M L, Blasco T, Concepcion P, Dimitrov M, Atanasova G, Kovacheva D. Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180: 156–161.
  • 8He C, Li P, Wang H, Cheng J, Zhang X, Wang Y, Hao Z. Ligandassisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. Journal of Hazardous Materials, 2010, 181(1–3): 996–1003.
  • 9Bendahou K, Cherif L, Siffert S, Tidahy H L, Bena?ssa H, Abouka?s A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A, 2008, 351(1): 82–87.
  • 10Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U. Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6 Microporous and Mesoporous Materials, 2013, 167: 207–212.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部