期刊文献+

Chemical characteristics of fine particulate matter emitted from commercial cooking 被引量:2

Chemical characteristics of fine particulate matter emitted from commercial cooking
原文传递
导出
摘要 The chemical characteristics of fine particulate matter (PM2.5) emitted from commercial cooking were explored in this study. Three typical commercial restau- rants in Shanghai, i.e., a Shanghai-style one (SHS), a Sichuan-style one (SCS) and an Italian-style one (ITS), were selected to conduct PM2.5 sampling. Particulate organic matter (POM) was found to be the predominant contributor to cooking-related PM2.5 mass in all the tested restaurants, with a proportion of 69.1% to 77.1%. Specifically, 80 trace organic compounds were identified and quantified by gas chromatography/mass spectrometry (GC/MS), which accounted for 3.8%-6.5% of the total PM2.5 mass. Among the quantified organic compounds, unsaturated fatty acids had the highest concentration, followed by saturated fatty acids. Comparatively, the impacts of other kinds of organic compounds were much smaller. Oleic acid was the most abundant single species in both SCS and ITS. However, in the case of SHS, linoleic acid was the richest one. ITS produced a much larger mass fraction of most organic species in POM than the two Chinese cooking styles except for monosaccharide anhy-drides and sterols. The results of this study could be utilized to explore the contribution of cooking emissions to PM2.5 pollution and to develop the emission inventory of PM2.5 from cooking, which could then help the policymakers design efficient treatment measures and control strategies on cooking emissions in the future. The chemical characteristics of fine particulate matter (PM2.5) emitted from commercial cooking were explored in this study. Three typical commercial restau- rants in Shanghai, i.e., a Shanghai-style one (SHS), a Sichuan-style one (SCS) and an Italian-style one (ITS), were selected to conduct PM2.5 sampling. Particulate organic matter (POM) was found to be the predominant contributor to cooking-related PM2.5 mass in all the tested restaurants, with a proportion of 69.1% to 77.1%. Specifically, 80 trace organic compounds were identified and quantified by gas chromatography/mass spectrometry (GC/MS), which accounted for 3.8%-6.5% of the total PM2.5 mass. Among the quantified organic compounds, unsaturated fatty acids had the highest concentration, followed by saturated fatty acids. Comparatively, the impacts of other kinds of organic compounds were much smaller. Oleic acid was the most abundant single species in both SCS and ITS. However, in the case of SHS, linoleic acid was the richest one. ITS produced a much larger mass fraction of most organic species in POM than the two Chinese cooking styles except for monosaccharide anhy-drides and sterols. The results of this study could be utilized to explore the contribution of cooking emissions to PM2.5 pollution and to develop the emission inventory of PM2.5 from cooking, which could then help the policymakers design efficient treatment measures and control strategies on cooking emissions in the future.
出处 《Frontiers of Environmental Science & Engineering》 CSCD 2016年第3期559-568,共10页 环境科学与工程前沿(英文)
关键词 commercial cooking PM2.5 chemical char- acteristics organic matter commercial cooking, PM2.5, chemical char- acteristics, organic matter
  • 相关文献

参考文献1

二级参考文献4

共引文献30

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部